ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Long-Lifetime Optical Trapping of a $^{40}$Ca$^{+}$ Ion |
Zheng Chen1,2,3†, Miao Wang1,2†, Baolin Zhang1,2, Huaqing Zhang1,2, Zixiao Ma1,2,3, Ruming Hu1,2,3, Yao Huang1,2*, Kelin Gao1,2, and Hua Guan1,2,4 |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4Wuhan Institute of Quantum Technology, Wuhan 430206, China
|
|
Cite this article: |
Zheng Chen, Miao Wang, Baolin Zhang et al 2024 Chin. Phys. Lett. 41 113701 |
|
|
Abstract We have experimentally achieved the all-optical trapping of a $^{40}$Ca$^{+}$ ion. An optical dipole trap was established using a high-power, far-detuned, tightly focused laser with a wavelength of 532 nm. The single $^{40}$Ca$^{+}$ ion was trapped without any RF fields and demonstrated a long lifetime of over 3 s. In this experiment, we implemented several measures to improve the optical trapping probability, including focusing the dipole beam waist near the diffraction limit, precisely compensating for stray electric fields, and mitigating electron shelving in metastable states. The optical trapping of a $^{40}$Ca$^{+}$ ion eliminates the influence of micromotion induced by RF fields, potentially paving the way for development of all-optical trapping ion optical clocks.
|
|
Received: 11 August 2024
Published: 11 November 2024
|
|
|
|
|
|
[1] | Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 | [2] | Zhiqiang Z, Arnold K J, Kaewuam R, and Barrett M D 2023 Sci. Adv. 9 eadg1971 | [3] | Aeppli A, Kim K, Warfield W, Safronova M S, and Ye J 2024 Phys. Rev. Lett. 133 023401 | [4] | Cai Z, Luan C Y, Ou L, Tu H, Yin Z, Zhang J N, and Kim K 2023 J. Korean Phys. Soc. 82 882 | [5] | Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletić V, and Lukin M D 2023 Nature 622 268 | [6] | Paul W 1990 Rev. Mod. Phys. 62 531 | [7] | Phillips W D 1998 Rev. Mod. Phys. 70 721 | [8] | Kiesenhofer D, Hainzer H, Zhdanov A, Holz P C, Bock M, Ollikainen T, and Roos C F 2023 PRX Quantum 4 020317 | [9] | Bloch D, Hofer B, Cohen S R, Browaeys A, and Ferrier-Barbut I 2023 Phys. Rev. Lett. 131 203401 | [10] | Schäfer F, Fukuhara T, Sugawa S, Takasu Y, and Takahashi Y 2020 Nat. Rev. Phys. 2 411 | [11] | Cetina M, Grier A T, and Vuletić V 2012 Phys. Rev. Lett. 109 253201 | [12] | Nguyên L H, Kalev A, Barrett M D, and Englert B G 2012 Phys. Rev. A 85 052718 | [13] | Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photonics 9 185 | [14] | Huntemann N, Sanner C, Lipphardt B, Tamm Chr, and Peik E 2016 Phys. Rev. Lett. 116 063001 | [15] | McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 | [16] | Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, and Gao K 2022 Phys. Rev. Appl. 17 034041 | [17] | Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, and Gao K 2023 Phys. Rev. Appl. 19 064004 | [18] | Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, and Gao K 2016 Phys. Rev. Lett. 116 013001 | [19] | Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, and Julienne P S 2019 Rev. Mod. Phys. 91 035001 | [20] | Härter A and Hecker Denschlag J 2014 Contemp. Phys. 55 33 | [21] | Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, and Monroe C 2018 Quantum Sci. Technol. 4 014004 | [22] | Yum D and Choi T 2022 Curr. Appl. Phys. 41 163 | [23] | Schneider Ch, Enderlein M, Huber T, and Schaetz T 2010 Nat. Photonics 4 772 | [24] | Huber T, Lambrecht A, Schmidt J, Karpa L, and Schaetz T 2014 Nat. Commun. 5 5587 | [25] | Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, and Schaetz T 2017 Nat. Photonics 11 704 | [26] | Enderlein M, Huber T, Schneider C, and Schaetz T 2012 Phys. Rev. Lett. 109 233004 | [27] | Schmidt J, Lambrecht A, Weckesser P, Debatin M, Karpa L, and Schaetz T 2018 Phys. Rev. X 8 021028 | [28] | Schmidt J, Weckesser P, Thielemann F, Schaetz T, and Karpa L 2020 Phys. Rev. Lett. 124 053402 | [29] | Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, and Schaetz T 2021 Nature 600 429 | [30] | Dubé P, Madej A A, Zhou Z, and Bernard J E 2013 Phys. Rev. A 87 023806 | [31] | Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, and Gill P 2014 Phys. Rev. Lett. 113 210801 | [32] | Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E, and Bergquist J C 2006 Phys. Rev. Lett. 97 020801 | [33] | Grimm R, Weidemüller M, and Ovchinnikov Y B 2000 Advances in Atomic, Molecular, and Optical Physics (Amsterdam: Elsevier) vol 42 p 95 | [34] | Wang M, Chen Z, Huang Y, Guan H, and Gao K L 2021 Chin. Phys. B 30 053702 | [35] | Knünz S, Herrmann M, Batteiger V, Saathoff G, Hänsch T W, and Udem Th 2012 Phys. Rev. A 85 023427 | [36] | Berkeland D J, Miller J D, Bergquist J C, Itano W M, and Wineland D J 1998 J. Appl. Phys. 83 5025 | [37] | Shao H, Wang M, Zeng M, Guan H, and Gao K 2018 J. Phys. Commun. 2 095019 | [38] | Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R, and Hogervorst W 2001 Appl. Phys. B 73 861 | [39] | Wang M, Chen Z, Huang Y, Guan H, and Gao K L 2023 Chin. J. Quantum Electron. 40 127 | [40] | Wilson E B 1927 J. Am. Stat. Assoc. 22 209 | [41] | Drakoudis A, Söllner M, and Werth G 2006 Int. J. Mass Spectrom. 252 61 | [42] | Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, and Gao K L 2015 Phys. Rev. Lett. 114 223001 | [43] | Huang Y, Wang M, Chen Z, Li C, Zhang H, Zhang B, Tang L, Shi T, Guan H, and Gao K L 2024 New J. Phys. 26 043021 | [44] | Jiang J, Jiang L, Wu Z W, Zhang D H, Xie L Y, and Dong C Z 2019 Phys. Rev. A 99 032510 | [45] | Jiang J, Jiang L, Wang X, Zhang D H, Xie L Y, and Dong C Z 2017 Phys. Rev. A 96 042503 | [46] | Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, and Ashby N 2024 Metrologia 61 012001 | [47] | Kim H, Heo M S, Park C Y, Yu D H, and Lee W K 2021 Metrologia 58 055007 | [48] | Zhang A, Xiong Z, Chen X, Jiang Y, Wang J, Tian C, Zhu Q, Wang B, Xiong D, He L, Ma L, and Lyu B 2022 Metrologia 59 065009 | [49] | Dubé P, Madej A A, Shiner A, and Jian B 2015 Phys. Rev. A 92 042119 | [50] | Hoenig D, Thielemann F, Karpa L, Walker T, Mohammadi A, and Schaetz T 2024 Phys. Rev. Lett. 132 133003 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|