Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 017402    DOI: 10.1088/0256-307X/41/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$
Kun Jiang1,2, Ziqiang Wang3, and Fu-Chun Zhang4,5
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics, Boston College, Chestnut Hill, MA 02467, USA
4Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang 2024 Chin. Phys. Lett. 41 017402
Download: PDF(1250KB)   PDF(mobile)(1339KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by the recent discovery of high-temperature superconductivity in bilayer La$_3$Ni$_2$O$_7$ under pressure, we study its electronic properties and superconductivity due to strong electron correlation. Using the inversion symmetry, we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors. It is found that the antisymmetric sector can be reduced to a one-band system near half filling, while the symmetric bands occupied by about two electrons are heavily overdoped individually. Using the strong coupling mean field theory, we obtain strong superconducting pairing with $B_{\rm 1g}$ symmetry in the antisymmetric sector. We propose that due to the spin-orbital exchange coupling between the two sectors, $B_{\rm 1g}$ pairing is induced in the symmetric bands, which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La$_3$Ni$_2$O$_7$.
Received: 11 December 2023      Express Letter Published: 10 January 2024
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.72.-h (Cuprate superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/017402       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/017402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Jiang
Ziqiang Wang
and Fu-Chun Zhang
[1] Bednorz J G and Müller K A 1986 Z. Phys. B-Condens. Matter 64 189
[2] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[3] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[4] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, and Lichtenberg F 1994 Nature 372 532
[5] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[6] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature 453 376
[7] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[8] Hu J P, Le C, and Wu X 2015 Phys. Rev. X 5 041012
[9] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[10] Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109
[11] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[12] Crespin M, Levitz P, and Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 79 1181
[13] Greenblatt M 1997 Curr. Opin. Solid State Mater. Sci. 2 174
[14] Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843
[15] Crespin M, Isnard O, Dubois F, Choisnet J, and Odier P 2005 J. Solid State Chem. 178 1326
[16] Kawai M, Matsumoto K, Ichikawa N, Mizumaki M, Sakata O, Kawamura N, Kimura S, and Shimakawa Y 2010 Cryst. Growth & Des. 10 2044
[17] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[18] Osada M, Wang B Y, Lee K, Li D, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801
[19] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[20] Norman M R 2020 Physics 13 85
[21] Sun H L, Huo M W, Hu X W, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[22] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 arXiv:2307.09865 [cond-mat.supr-con]
[23] Zhang Y, Su D, Huang Y, Sun H, Huo M, Shan Z, Ye K, Yang Z, Li R, Smidman M, Wang M, Jiao L, and Yuan H 2023 arXiv:2307.14819 [cond-mat.supr-con]
[24] Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con]
[25] Luo Z, Hu X, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001
[26] Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510
[27] Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505
[28] Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2306.06039 [cond-mat.supr-con]
[29] Gu Y, Le C, Yang Z, Wu X, and Hu J 2023 arXiv:2306.07275 [cond-mat.supr-con]
[30] Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[31] Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501
[32] Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105
[33] Wú W, Luo Z, Yao D X, and Wang M 2023 arXiv:2307.05662 [cond-mat.str-el]
[34] Cao Y and Yang Y F 2023 arXiv:2307.06806 [cond-mat.supr-con]
[35] Chen X, Jiang P, Li J, Zhong Z, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con]
[36] Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002
[37] Lu C, Pan Z, Yang F, and Wu C 2023 arXiv:2307.14965 [cond-mat.supr-con]
[38] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 arXiv:2307.15276 [cond-mat.supr-con]
[39] Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511
[40] Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, and Si Q 2023 arXiv:2307.16697 [cond-mat.supr-con]
[41] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, and Su G 2023 arXiv:2307.16873 [cond-mat.str-el]
[42] Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108
[43] Fujimori A and Minami F 1984 Phys. Rev. B 30 957
[44] van Elp J, Eskes H, Kuiper P, and Sawatzky G A 1992 Phys. Rev. B 45 1612
[45] Kuiper P, Kruizinga G, Ghijsen J, Sawatzky G A, and Verweij H 1989 Phys. Rev. Lett. 62 221
[46] Taguchi M, Matsunami M, Ishida Y, Eguchi R, Chainani A, Takata Y, Yabashi M, Tamasaku K, Nishino Y, Ishikawa T, Senba Y, Ohashi H, and Shin S 2008 Phys. Rev. Lett. 100 206401
[47] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[48] Coleman P 1984 Phys. Rev. B 29 3035
[49] Anderson P W, Lee P A, Randeria M, Rice T M, Trivedi N, and Zhang F C 2004 J. Phys.: Condens. Matter 16 R755
[50] Jiang K, Wu X, Hu J, and Wang Z 2018 Phys. Rev. Lett. 121 227002
[51] Jiang K, Le C, Li Y, Qin S, Wang Z, Zhang F, and Hu J 2021 Phys. Rev. B 103 045108
[52] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2023 arXiv:2309.01148 [cond-mat.supr-con]
Related articles from Frontiers Journals
[1] Long Xiong, Ming Gong, Zhao-Xiang Fang, and Rui Sun. Ground State and Its Topological Properties of Three-Dimensional Spin-Orbit Coupled Degenerate Fermi Gases[J]. Chin. Phys. Lett., 2023, 40(12): 017402
[2] Xiao-Ting Chen, Chun-Hui Liu, Dong-Hui Xu, and Chui-Zhen Chen. Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions[J]. Chin. Phys. Lett., 2023, 40(9): 017402
[3] Jiacheng Ye, Jun Li, DingYong Zhong, and Dao-Xin Yao. Possible Superconductivity in Biphenylene[J]. Chin. Phys. Lett., 2023, 40(7): 017402
[4] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 017402
[5] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 017402
[6] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[7] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 017402
[8] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 017402
[9] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 017402
[10] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 017402
[11] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 017402
[12] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 017402
[13] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 017402
[14] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 017402
[15] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 017402
Viewed
Full text


Abstract