Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 016302    DOI: 10.1088/0256-307X/41/1/016302
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure
Menglin Li, Muhammad Asif Shakoori, Ruipeng Wang, and Haipeng Li*
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
Cite this article:   
Menglin Li, Muhammad Asif Shakoori, Ruipeng Wang et al  2024 Chin. Phys. Lett. 41 016302
Download: PDF(7026KB)   PDF(mobile)(7053KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulation is used to calculate the interfacial thermal resistance of a graphene/carbon nanotubes/hexagonal boron nitride (Gr/CNTs/hBN) sandwiched heterostructure, in which vertically aligned carbon nanotube (VACNT) arrays are covalently bonded to graphene and hexagonal boron nitride layers. We find that the interfacial thermal resistance (ITR) of the Gr/VACNT/hBN sandwiched heterostructure is one to two orders of magnitude smaller than the ITR of a Gr/hBN van der Waals heterostructure with the same plane size. It is observed that covalent bonding effectively enhances the phonon coupling between Gr and hBN layers, resulting in an increase in the overlap factor of phonon density of states between Gr and hBN, thus reducing the ITR of Gr and hBN. In addition, the chirality, size (diameter and length), and packing density of sandwich-layer VACNTs have an important influence on the ITR of the heterostructure. Under the same CNT diameter and length, the ITR of the sandwiched heterostructure with armchair-shaped VACNTs is higher than that of the sandwiched heterostructure with zigzag-shaped VACNTs due to the different chemical bonding of chiral CNTs with Gr and hBN. When the armchair-shaped CNT diameter increases or the length decreases, the ITR of the sandwiched heterostructure tends to decrease. Moreover, the increase in the VACNT packing density also leads to a continuous decrease in the ITR of the sandwiched heterostructure, attributed to the extremely high intrinsic thermal conductivity of CNTs and the increase of out-of-plane heat transfer channels. This work may be helpful for understanding the mechanism for ITR in multilayer vertical heterostructures, and provides theoretical guidance for a new strategy to regulate the interlayer thermal resistance of heterostructures by optimizing the design of sandwich layer thermal interface materials.
Received: 16 October 2023      Published: 09 January 2024
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.10.+i (Heat conduction)  
  31.15.xv (Molecular dynamics and other numerical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/016302       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/016302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Menglin Li
Muhammad Asif Shakoori
Ruipeng Wang
and Haipeng Li
[1] Chen J, Xu X F, Zhou J, and Li B W 2022 Rev. Mod. Phys. 94 025002
[2] Teng Y Q, Zhao H L, Zhang Z J, Li Z L, Xia Q, Zhang Y, Zhao L N, Du X F, Du Z H, Lv P P, and Świerczek K 2016 ACS Nano 10 8526
[3] Tang Z K, Zhang Y N, Zhang D Y, Lau W M, and Liu L M 2014 Sci. Rep. 4 7007
[4] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol. 5 722
[5] Yu Z H, Zhang L F, Wu J, and Zhao Y S 2023 Acta Phys. Sin. 72 057301 (in Chinese)
[6] Singh J and Kumar R 2023 Diamond Relat. Mater. 136 110001
[7] Gholivand H and Donmezer N 2017 IEEE Trans. Nanotechnol. 16 752
[8] Alborzi M S and Rajabpour A 2021 Eur. Phys. J. Plus 136 959
[9] Chen C C, Li Z, Shi L, and Cronin S B 2015 Nano Res. 8 666
[10] Chen C C, Li Z, Shi L, and Cronin S B 2014 Appl. Phys. Lett. 104 081908
[11] Zhang J C, Hong Y, and Yue Y N 2015 J. Appl. Phys. 117 134307
[12] Ren W J, Ouyang Y L, Jiang P F, Yu C Q, He J, and Chen J 2021 Nano Lett. 21 2634
[13] Zou J H and Cao B Y 2017 Appl. Phys. Lett. 110 103106
[14] Chen X K, Pang M, Chen T, Du D, and Chen K Q 2020 ACS Appl. Mater. & Interfaces 12 15517
[15] Zhou J S, Li H P, Tang H K, Shao L, Han K, and Shen X P 2022 ACS Omega 7 5844
[16] Run K P, Shi X T, Zhang Y L, Guo Y Q, Zhong X, and Gu J W 2023 Angew. Chem. Int. Ed. 62 e202309010
[17] Zhang Y H, Heo Y J, Son Y R, In I, An K H, Kim B J, and Park S J 2019 Carbon 142 445
[18] Zang X N, Zhou Q, Chang J Y, Liu Y M, and Lin L W 2015 Microelectron. Eng. 132 192
[19] Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, and Ruch D 2016 Prog. Polym. Sci. 61 1
[20] Peng L Q, Yu H T, Chen C, He Q X, Zhang H, Zhao F, Qin M M, Feng Y, and Feng W 2023 Adv. Sci. 10 2205962
[21] Zhang D, Tang Y Z, Wang S, Lin H, and He Y 2022 Compos. Interface 29 899
[22] Yu H T, Feng Y Y, Chen C, Zhang Z X, Cai Y, Qin M M, and Feng W 2021 Carbon 179 348
[23] Lindsay L and Broido D A 2011 Phys. Rev. B 84 155421
[24] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[25] Zou J H, Ye Z Q, and Cao B Y 2016 J. Chem. Phys. 145 134705
[26] Si C, Wang X D, Fan Z, Feng Z H, and Cao B Y 2017 Int. J. Heat Mass Transfer 107 450
[27] Zhang C X, Lou J, and Song J Z 2014 J. Appl. Phys. 115 144308
[28] Thamwattana N and Hill J M 2007 J. Phys.: Condens. Matter 19 406209
[29] Plimpton S 1995 J. Comput. Phys. 117 1
[30] Liu B, Baimova J A, Reddy C D, Law A W K, Dmitriev S V, Wu H, and Zhou K 2014 ACS Appl. Mater. & Interfaces 6 18180
[31] Hong Y, Zhang J, and Zeng X C 2016 Nanoscale 8 19211
[32] Ouyang W G, Qin H S, Urbakh M, and Hod O 2020 Nano Lett. 20 7513
[33] Fan L and Yao W J 2021 Diamond Relat. Mater. 118 108521
[34] Yang H, Zhang Z T, Zang J C, and Zeng X C 2018 Nanoscale 10 19092
[35] Ye Z Q, Cao B Y, and Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese)
[36] Eshkalak K E, Sadeghzadeh S, and Molaei F 2020 J. Phys. Chem. C 124 14316
[37] Liu W X, Wu Y Q, Hong Y, Hou B, Zhang J C, and Yue Y N 2021 Phys. Chem. Chem. Phys. 23 19166
[38] Hou Q W, Cao B Y, and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[39] Grujicic M, Cao G, and Gersten B 2004 Mater. Sci. Eng. B 107 204
[40] Lin J Y and Huang M J 2023 Nanoscale Microscale Thermophys. Eng. 27 149
[41] Zhang G and Li B W 2005 J. Chem. Phys. 123 114714
Related articles from Frontiers Journals
[1] Yu Yang, Dengke Ma, and Lifa Zhang. Introduction of Asymmetry to Enhance Thermal Transport in Porous Metamaterials at Low Temperature[J]. Chin. Phys. Lett., 2023, 40(12): 016302
[2] Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, and Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect[J]. Chin. Phys. Lett., 2023, 40(10): 016302
[3] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 016302
[4] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 016302
[5] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 016302
[6] Wen-Xue Xu, Xin-Gang Liang. Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains[J]. Chin. Phys. Lett., 2020, 37(4): 016302
[7] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 016302
[8] DING Xing, MING Yi. Mechanisms Causing Ballistic Thermal Rectification[J]. Chin. Phys. Lett., 2014, 31(04): 016302
[9] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, Yu Jun, WANG Jing, LIU Gui-Chang. Preparation and Thermal Characterization of Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2009, 26(7): 016302
[10] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, YU Jun, WANG Jia-Qi. Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique[J]. Chin. Phys. Lett., 2008, 25(2): 016302
[11] XU Xiao-Dong, MA Di, ZHANG Shu-Yi, LUO Ai-Hua, KIYOTAKA Wasa,. Thermal Diffusivity of Film/Substrate Structures Characterized by Transient Thermal Grating Method[J]. Chin. Phys. Lett., 2008, 25(1): 016302
Viewed
Full text


Abstract