Chin. Phys. Lett.  2024, Vol. 41 Issue (1): 016301    DOI: 10.1088/0256-307X/41/1/016301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Determination of Thermal Properties of Unsmooth Si Nanowires
Shixian Liu, Alexander A. Barinov*, Fei Yin, and Vladimir I. Khvesyuk
Department of Thermophysics, Bauman Moscow State Technical University, Moscow 105005, Russian Federation
Cite this article:   
Shixian Liu, Alexander A. Barinov, Fei Yin et al  2024 Chin. Phys. Lett. 41 016301
Download: PDF(3348KB)   PDF(mobile)(3387KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We estimate the thermal properties of unsmooth Si nanowires, considering key factors such as size (diameter), surface texture (roughness) and quantum size effects (phonon states) at different temperatures. For nanowires with a diameter of less than 20 nm, we highlight the importance of quantum size effects in heat capacity calculations, using dispersion relations derived from the modified frequency equation for the elasticity of a rod. The thermal conductivities of nanowires with diameters of 37, 56, and 115 nm are predicted using the Fuchs–Sondheimer model and Soffer's specular parameter. Notably, the roughness parameters are chosen to reflect the technological characteristics of the real surfaces. Our findings reveal that surface texture plays a significant role in thermal conductivity, particularly in the realm of ballistic heat transfer within nanowires. This study provides practical recommendations for developing new thermal management materials.
Received: 07 October 2023      Published: 02 January 2024
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.K- (Phonon interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/1/016301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I1/016301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shixian Liu
Alexander A. Barinov
Fei Yin
and Vladimir I. Khvesyuk
[1] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[2] Feser J P et al. 2012 J. Appl. Phys. 112 114306
[3] Lim J, Hippalgaonkar K, Andrews S C, Majumdar A, and Yang P 2012 Nano Lett. 12 2475
[4] Pochhammer L 1876 Z. Angew. Math. Phys. 81 324
[5] Holden A N 1951 Bell Syst. Tech. J. 30 956
[6] Pao Y H and Mindlin R D 1960 J. Appl. Mech. 27 513
[7] Khitun A, Balandin A, and Wang K L 1999 Superlattices Microstruct. 26 181
[8] Bifano M F P, Kaul P B, and Prakash V 2010 Nanotechnology 21 235704
[9] Chantrenne P, Barrat J L, Blase X, and Gale J D 2005 J. Appl. Phys. 97 104318
[10] MacDonald D K C 1950 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 203 223
[11] Bera C 2012 J. Appl. Phys. 112 074323
[12] Kukita K and Kamakura Y 2013 J. Appl. Phys. 114 154312
[13] Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056
[14] Yang N, Zhang G, and Li B 2008 Nano Lett. 8 276
[15] Yang N, Zhang G, and Li B 2010 Nano Today 5 85
[16] Zhu G, Zhao C, Wang X, and Wang J 2021 Chin. Phys. Lett. 38 024401
[17] Wang W Z, Ai Q, Yong S, and Tan H P 2023 Int. J. Heat Mass Transfer 206 123959
[18] He Z, Yuan K, Xiong G, and Wang J 2023 Chin. Phys. Lett. 40 104402
[19] Wang J and Wang J S 2007 Appl. Phys. Lett. 90 241908
[20]Achenbach J 2012 Wave propagation in Elastic Solids (Amsterdam: Elsevier) p 236
[21] Bifano M F P and Prakash V 2012 J. Appl. Phys. 111 034319
[22] Zou J and Balandin A 2001 J. Appl. Phys. 89 2932
[23] Au Y T C et al. 2006 Phys. Rev. B 74 155317
[24]Tong T, Prasher R and Majumdar A 2007 Micro and Nanosystems, Parts A and B (Seattle, WA: ASME) p 631
[25] Pascual-Gutiérrez J A, Murthy J Y, and Viskanta R 2007 J. Appl. Phys. 102 034315
[26] Giannozzi P et al. 2017 J. Phys.: Condens. Matter 29 465901
[27] Prasher R, Tong T, and Majumdar A 2008 Nano Lett. 8 99
[28]Kittel C 2005 Introduction to Solid State Physics 8th edn (Hoboken: Wiley) p 107
[29]Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p 189
[30] Soffer S B 1967 J. Appl. Phys. 38 1710
[31] Callaway J 1959 Phys. Rev. 113 1046
[32] Barinov A A, Liu B, Khvesyuk V I, and Zhang K 2020 Phys. At. Nucl. 83 1538
[33] Khvesyuk V I and Skryabin A S 2017 High Temp. 55 434
[34] Dugdale J S and Basinski Z S 1967 Phys. Rev. 157 552
[35] Holland M G 1963 Phys. Rev. 132 2461
[36] Ward A and Broido D A 2010 Phys. Rev. B 81 085205
[37] Morelli D T, Heremans J P, and Slack G A 2002 Phys. Rev. B 66 195304
[38] Herring C 1954 Phys. Rev. 95 954
[39] Asen-Palmer M et al. 1997 Phys. Rev. B 56 9431
[40] Klemens P G 1955 Proc. Phys. Soc. Sect. A 68 1113
Related articles from Frontiers Journals
[1] Quan Zhou, Yuqi Li, Fei Tang, Kaixuan Li, Xiaohui Rong, Yaxiang Lu, Liquan Chen, and Yong-Sheng Hu. Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries[J]. Chin. Phys. Lett., 2021, 38(7): 016301
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 016301
[3] Yu-Ping Cang, Shuai-Bin Lian, Hui-Ming Yang, Dong Chen. Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic $M_{3}$N$_{4}$ ($M$=C, Si, Sn) Polymorphs via First-Principles Calculations[J]. Chin. Phys. Lett., 2016, 33(06): 016301
[4] SONG Hua-Jie, LI Hua, HUANG Feng-Lei, ZHANG Shuo-Dao, HONG Tao. High-Fidelity Hugoniots of α Phase RDX Solid from High-Quality Force Field with Thermal, Zero-Point Vibration, and Anharmonic Effects[J]. Chin. Phys. Lett., 2015, 32(08): 016301
[5] YU Hui-Zhu, CHEN Hong-Guang, XU Kun-Qi, ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong. Local Piezoresponse and Thermal Behavior of Ferroelastic Domains in Multiferroic BiFeO3 Thin Films by Scanning Piezo-Thermal Microscopy[J]. Chin. Phys. Lett., 2014, 31(10): 016301
[6] LIU Xian-Kun, TANG Bin. The Structure and Elastic and Thermodynamic Properties of Cubic-NbH2 under High Pressures from First-Principles Calculations[J]. Chin. Phys. Lett., 2013, 30(6): 016301
[7] SHEN Hui, XU Jia-Yue, PING Wei-Jie, HE Qing-Bo, ZHANG Yan, JIN Min, JIANG Guo-Jian. Growth, Mechanical and Thermal Properties of Bi4Si3O12 Single Crystals[J]. Chin. Phys. Lett., 2012, 29(7): 016301
[8] SUN Dun-Lu**,LUO Jian-Qiao,XIAO Jing-Zhong,ZHANG Qing-Li,CHEN Jia-Kang,LIU Wen-Peng,KANG Hong-Xiang,YIN Shao-Tang. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals[J]. Chin. Phys. Lett., 2012, 29(5): 016301
[9] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 016301
[10] LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide[J]. Chin. Phys. Lett., 2010, 27(3): 016301
[11] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 016301
[12] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 0, (): 016301
[13] WEI Lin, LI Ai-Zhen, ZHANG Yong-Gang, LI Yao-Yao. The Self-Heating Effect of Quantum Cascade Lasers Based on a pectroscopic Method[J]. Chin. Phys. Lett., 2009, 26(8): 016301
[14] SUN Li-Li, JI Guang-Fu, CHEN Xiang-Rong, GOU Qing-Quan. Structural and Thermodynamic Properties of Cerium via First-Principles Plane Wave Method with a Relativistic Analytic Pseudopotential[J]. Chin. Phys. Lett., 2009, 26(1): 016301
[15] ZHANG Wei, LI Zhe, CHEN Xiang-Rong, CAI Ling-Cang, JING Fu-Qian,. First-Principles Calculations for Thermodynamic Properties of Perovskite-Type Superconductor MgCNi3[J]. Chin. Phys. Lett., 2008, 25(7): 016301
Viewed
Full text


Abstract