CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W) |
Xin-Zhu Yin1, Hao Wang1, Qiu-Hao Wang1, Na Jiao1*, Mei-Yan Ni1, Meng-Meng Zheng1, Hong-Yan Lu1*, and Ping Zhang1,2* |
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
|
|
Cite this article: |
Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang et al 2023 Chin. Phys. Lett. 40 097404 |
|
|
Abstract The superconductivity of two-dimensional (2D) materials has extremely important research significance. To date, superconducting transition temperatures ($T_{\rm c}$) of 2D superconductors are still far from practical applications. Previously, 2D MXene Mo$_2$N has been successfully synthesized [Urbankowski et al. Nanoscale 9 17722, (2017)]. We systematically investigate the effects of carbonization and further hydrogenation on the stability, electronic property and superconductivity of 1T- and 2H-$M_{2}$N ($M$ = Mo, W) based on first-principles calculations. The results show that the 1T-$M_{2}$N and 2H-$M_{2}$N ($M$ = Mo, W) are all dynamically and thermodynamically stable after carbonization and further hydrogenation. After carbonization, $T_{\rm c}$'s of 1T-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all increased, while $T_{\rm c}$'s of 2H-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all decreased. By further hydrogenation, the $T_{\rm c}$'s of 1T- and 2H-$M_{2}$NC$_{2}$H$_{2}$ are all increased. Among all of these structures, $T_{\rm c}$ of 1T-Mo$_2$NC$_2$H$_2$ is the highest one, reaching 42.7 K, and the corresponding electron-phonon coupling strength $\lambda$ is 2.27. Therefore, hydrogenation is an effective method to modulate $T_{\rm c}$'s of 2D $M_{2}$NC$_{2}$ ($M$ = Mo, W) materials.
|
|
Received: 17 July 2023
Published: 31 August 2023
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
74.70.Wz
|
(Carbon-based superconductors)
|
|
|
|
|
[1] | Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P, Straßer C, Stöhr A, Forti S, Ast C R, Starke U, and Damascelli A 2015 Proc. Natl. Acad. Sci. USA 112 11795 |
[2] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 |
[3] | Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, and Jia J F 2015 Nat. Mater. 14 285 |
[4] | Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, and Mak K F 2016 Nat. Phys. 12 139 |
[5] | Qiu X L, Zhang J F, Yang H C, Lu Z Y, and Liu K 2022 Phys. Rev. B 105 165101 |
[6] | Liu H D, Li Y P, Yang L, Jiao N, Zheng M M, Lu H Y, and Zhang P 2022 Phys. Rev. B 105 224501 |
[7] | Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P, and Ting C S 2023 Chin. Phys. Lett. 40 017402 |
[8] | Zeng S M, Zhao Y C, Li G, and Ni J 2016 Phys. Rev. B 94 024501 |
[9] | Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 059902 |
[10] | Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802 |
[11] | Ge Y F, Wan W H, Yang F, and Yao Y G 2015 New J. Phys. 17 035008 |
[12] | Bekaert J, Aperis A, Partoens B, Oppeneer P M, and Milošević M V 2017 Phys. Rev. B 96 094510 |
[13] | Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milošević M V 2019 Phys. Rev. Lett. 123 077001 |
[14] | Zhou K Y, Deng J, Guo L W, and Guo J G 2020 Chin. Phys. Lett. 37 097402 |
[15] | Li Y P, Yang L, Liu H D, Jiao N, Ni M Y, Hao N, Lu H Y, and Zhang P 2022 Phys. Chem. Chem. Phys. 24 9256 |
[16] | Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744 |
[17] | Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, and Xu J 2021 ACS Nano 15 20319 |
[18] | Liu P F, Zheng F, Li J, Si J G, Wei L, Zhang J, and Wang B T 2022 Phys. Rev. B 105 245420 |
[19] | Bekaert J, Sevik C, and Milošević M V 2020 Nanoscale 12 17354 |
[20] | Lei J C, Kutana A, and Yakobson B I 2017 J. Mater. Chem. C 5 3438 |
[21] | Pereira Z S, Faccin G M, and da Silva E Z 2022 Nanoscale 14 8594 |
[22] | Bekaert J, Sevik C, and Milošević M V 2022 Nanoscale 14 9918 |
[23] | Sevik C, Bekaert J, and Milošević M V 2023 Nanoscale 15 8792 |
[24] | Tan S, Tackett B M, He Q, Lee J H, Chen J G, and Wong S S 2020 Nano Res. 13 1434 |
[25] | Chen J Y and Ge Y F 2021 Phys. Rev. B 103 064510 |
[26] | McMillan W L 1968 Phys. Rev. 167 331 |
[27] | Jiao N, Liu H D, Yang L, Li Y P, Zheng M, Lu H Y, and Zhang P 2022 Europhys. Lett. 138 46002 |
[28] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[29] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[30] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[31] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[32] | Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 |
[33] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
[34] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[35] | Kawamura M 2019 Comput. Phys. Commun. 239 197 |
[36] | Dynes R 1972 Solid State Commun. 10 615 |
[37] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
[38] | Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L, Haines B, May S J, Billinge S J L, and Gogotsi Y 2017 Nanoscale 9 17722 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|