Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 097404    DOI: 10.1088/0256-307X/40/9/097404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)
Xin-Zhu Yin1, Hao Wang1, Qiu-Hao Wang1, Na Jiao1*, Mei-Yan Ni1, Meng-Meng Zheng1, Hong-Yan Lu1*, and Ping Zhang1,2*
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Cite this article:   
Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang et al  2023 Chin. Phys. Lett. 40 097404
Download: PDF(14782KB)   PDF(mobile)(15102KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The superconductivity of two-dimensional (2D) materials has extremely important research significance. To date, superconducting transition temperatures ($T_{\rm c}$) of 2D superconductors are still far from practical applications. Previously, 2D MXene Mo$_2$N has been successfully synthesized [Urbankowski et al. Nanoscale 9 17722, (2017)]. We systematically investigate the effects of carbonization and further hydrogenation on the stability, electronic property and superconductivity of 1T- and 2H-$M_{2}$N ($M$ = Mo, W) based on first-principles calculations. The results show that the 1T-$M_{2}$N and 2H-$M_{2}$N ($M$ = Mo, W) are all dynamically and thermodynamically stable after carbonization and further hydrogenation. After carbonization, $T_{\rm c}$'s of 1T-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all increased, while $T_{\rm c}$'s of 2H-$M_{2}$NC$_{2}$ ($M$ = Mo, W) are all decreased. By further hydrogenation, the $T_{\rm c}$'s of 1T- and 2H-$M_{2}$NC$_{2}$H$_{2}$ are all increased. Among all of these structures, $T_{\rm c}$ of 1T-Mo$_2$NC$_2$H$_2$ is the highest one, reaching 42.7 K, and the corresponding electron-phonon coupling strength $\lambda$ is 2.27. Therefore, hydrogenation is an effective method to modulate $T_{\rm c}$'s of 2D $M_{2}$NC$_{2}$ ($M$ = Mo, W) materials.
Received: 17 July 2023      Published: 31 August 2023
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.20.Pq (Electronic structure calculations)  
  74.25.-q (Properties of superconductors)  
  74.70.Wz (Carbon-based superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/097404       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/097404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Zhu Yin
Hao Wang
Qiu-Hao Wang
Na Jiao
Mei-Yan Ni
Meng-Meng Zheng
Hong-Yan Lu
and Ping Zhang
[1] Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P, Straßer C, Stöhr A, Forti S, Ast C R, Starke U, and Damascelli A 2015 Proc. Natl. Acad. Sci. USA 112 11795
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[3] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, and Jia J F 2015 Nat. Mater. 14 285
[4] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, and Mak K F 2016 Nat. Phys. 12 139
[5] Qiu X L, Zhang J F, Yang H C, Lu Z Y, and Liu K 2022 Phys. Rev. B 105 165101
[6] Liu H D, Li Y P, Yang L, Jiao N, Zheng M M, Lu H Y, and Zhang P 2022 Phys. Rev. B 105 224501
[7] Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P, and Ting C S 2023 Chin. Phys. Lett. 40 017402
[8] Zeng S M, Zhao Y C, Li G, and Ni J 2016 Phys. Rev. B 94 024501
[9] Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 059902
[10] Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802
[11] Ge Y F, Wan W H, Yang F, and Yao Y G 2015 New J. Phys. 17 035008
[12] Bekaert J, Aperis A, Partoens B, Oppeneer P M, and Milošević M V 2017 Phys. Rev. B 96 094510
[13] Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milošević M V 2019 Phys. Rev. Lett. 123 077001
[14] Zhou K Y, Deng J, Guo L W, and Guo J G 2020 Chin. Phys. Lett. 37 097402
[15] Li Y P, Yang L, Liu H D, Jiao N, Ni M Y, Hao N, Lu H Y, and Zhang P 2022 Phys. Chem. Chem. Phys. 24 9256
[16] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744
[17] Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K, Chen Z, Zeng X, Gu X, and Xu J 2021 ACS Nano 15 20319
[18] Liu P F, Zheng F, Li J, Si J G, Wei L, Zhang J, and Wang B T 2022 Phys. Rev. B 105 245420
[19] Bekaert J, Sevik C, and Milošević M V 2020 Nanoscale 12 17354
[20] Lei J C, Kutana A, and Yakobson B I 2017 J. Mater. Chem. C 5 3438
[21] Pereira Z S, Faccin G M, and da Silva E Z 2022 Nanoscale 14 8594
[22] Bekaert J, Sevik C, and Milošević M V 2022 Nanoscale 14 9918
[23] Sevik C, Bekaert J, and Milošević M V 2023 Nanoscale 15 8792
[24] Tan S, Tackett B M, He Q, Lee J H, Chen J G, and Wong S S 2020 Nano Res. 13 1434
[25] Chen J Y and Ge Y F 2021 Phys. Rev. B 103 064510
[26] McMillan W L 1968 Phys. Rev. 167 331
[27] Jiao N, Liu H D, Yang L, Li Y P, Zheng M, Lu H Y, and Zhang P 2022 Europhys. Lett. 138 46002
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[33] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Kawamura M 2019 Comput. Phys. Commun. 239 197
[36] Dynes R 1972 Solid State Commun. 10 615
[37] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[38] Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L, Haines B, May S J, Billinge S J L, and Gogotsi Y 2017 Nanoscale 9 17722
Related articles from Frontiers Journals
[1] Fang-Jun Cheng, Yi-Min Zhang, Jia-Qi Fan, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Ambipolar Doping of Monolayer FeSe by Interface Engineering[J]. Chin. Phys. Lett., 2023, 40(8): 097404
[2] Peiyi Li, Jiachang Bi, Shunda Zhang, Rui Cai, Guanhua Su, Fugang Qi, Ruyi Zhang, Zhiyang Wei, and Yanwei Cao. Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films[J]. Chin. Phys. Lett., 2023, 40(8): 097404
[3] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 097404
[4] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 097404
[5] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 097404
[6] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 097404
[7] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 097404
[8] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 097404
[9] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 097404
[10] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 097404
[11] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 097404
[12] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 097404
[13] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 097404
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 097404
[15] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 097404
Viewed
Full text


Abstract