ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Energy Levels and Transition Rates for Laser Cooling Os$^{-}$ and a General Approach to Produce Cold Atoms and Molecules |
Yuzhu Lu1, Rui Zhang1, Changxian Song2, Chongyang Chen2, Ran Si2*, and Chuangang Ning1,3* |
1Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China 2Shanghai EBIT Lab, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China 3Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
|
|
Cite this article: |
Yuzhu Lu, Rui Zhang, Changxian Song et al 2023 Chin. Phys. Lett. 40 093101 |
|
|
Abstract High-resolution photoelectron energy spectra of osmium anions are obtained using the slow-electron velocity-map imaging method. The energy levels of excited states $^{4}\!F_{7/2}$, $^{4}\!F_{5/2}$ and $^{4}\!F_{3/2}$ of Os$^{-}$ are determined to be 148.730(13), 155.69(15), and 176.76(13) THz [or 4961.09(41), 5193.4(49), and 5896.1(42) cm$^{-1}$], respectively. The lifetime of the opposite-parity excited state $^{6}\!D_{9/2}^{\rm o}$ is determined to be 201(10) µs using a cold ion trap, about 15 times shorter than the previous result 3(1) ms. Our high-level multi-configuration Dirac–Hartree–Fock calculations yield a theoretical lifetime 527 µs. Our work shows that the laser cooling rate of Os$^{-}$ is as fast as that of Th$^{-}$. The advantages of Os$^{-}$ are its near-IR range cooling transition and simple electronic structure, which make Os$^{-}$ a promising candidate for laser cooling of negative ions. We propose a general approach to produce cold atoms and molecules based on the sympathetic cooling of negative ions in combination with a threshold photodetachment.
|
|
Received: 25 May 2023
Published: 30 August 2023
|
|
PACS: |
32.80.Gc
|
(Photodetachment of atomic negative ions)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
37.10.Rs
|
(Ion cooling)
|
|
|
|
|
[1] | Bilodeau R C and Haugen H K 2000 Phys. Rev. Lett. 85 534 |
[2] | Warring U, Canali C, Fischer A et al. 2009 J. Phys.: Conf. Ser. 194 152022 |
[3] | Warring U, Amoretti M, Canali C et al. 2009 Phys. Rev. Lett. 102 043001 |
[4] | Kellerbauer A and Fritzsche S 2012 J. Phys.: Conf. Ser. 388 012023 |
[5] | Kellerbauer A, Fischer A, and Warring U 2014 Phys. Rev. A 89 043430 |
[6] | Kellerbauer A, Canali C, Fischer A et al. 2011 Phys. Rev. A 84 062510 |
[7] | O'Malley S M and Beck D R 2010 Phys. Rev. A 81 032503 |
[8] | Pan L and Beck D R 2010 Phys. Rev. A 82 014501 |
[9] | Shi Z L, Li Z L, Wang P J et al. 2018 Chin. Phys. Lett. 35 123701 |
[10] | Zhang J, Deng K, Luo J et al. 2017 Chin. Phys. Lett. 34 050601 |
[11] | Chen T, Du L J, Song H F et al. 2015 Chin. Phys. Lett. 32 083701 |
[12] | Wang S G, Zhang J W, Miao K et al. 2013 Chin. Phys. Lett. 30 013703 |
[13] | Wang B, Lü D S, Qu Q Z et al. 2011 Chin. Phys. Lett. 28 063701 |
[14] | Yzombard P, Hamamda M, Gerber S et al. 2015 Phys. Rev. Lett. 114 213001 |
[15] | Fischer A, Canali C, Warring U et al. 2010 Phys. Rev. Lett. 104 073004 |
[16] | Walter C W, Gibson N D, Janczak C M et al. 2007 Phys. Rev. A 76 052702 |
[17] | Walter C W, Gibson N D, Li Y G et al. 2011 Phys. Rev. A 84 032514 |
[18] | Walter C W, Gibson N D, Matyas D J et al. 2014 Phys. Rev. Lett. 113 063001 |
[19] | Cerchiari G, Kellerbauer A, Safronova M S et al. 2018 Phys. Rev. Lett. 120 133205 |
[20] | Jordan E, Cerchiari G, Fritzsche S et al. 2015 Phys. Rev. Lett. 115 113001 |
[21] | Kellerbauer A, Cerchiari G, Jordan E et al. 2015 Phys. Scr. 90 054014 |
[22] | Tang R L, Si R, Fei Z J et al. 2019 Phys. Rev. Lett. 123 203002 |
[23] | Tang R L, Si R, Fei Z J et al. 2021 Phys. Rev. A 103 042817 |
[24] | Ni K K, Ospelkaus S, de Miranda M H G et al. 2008 Science 322 231 |
[25] | Krems R, Friedrich B, and Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (Boca Raton: CRC Press) |
[26] | Yang H et al. 2022 Science 378 1009 |
[27] | Barry J F, Shuman E S, Norrgard E B et al. 2012 Phys. Rev. Lett. 108 103002 |
[28] | Anderegg L, Augenbraun B L, Chae E et al. 2017 Phys. Rev. Lett. 119 103201 |
[29] | Anderegg L, Burchesky S, Bao Y et al. 2021 Science 373 779 |
[30] | Ding S Q, Wu Y W, Finneran I A, Burau J J, and Ye J 2020 Phys. Rev. X 10 021049 |
[31] | Kozyryev I et al. 2017 Phys. Rev. Lett. 118 173201 |
[32] | Vilas N B, Hallas C, Anderegg L et al. 2022 Nature 606 70 |
[33] | Mitra D, Vilas N B, Hallas C et al. 2020 Science 369 1366 |
[34] | Prehn A, Ibrügger M, Glöckner R et al. 2016 Phys. Rev. Lett. 116 063005 |
[35] | Cheng C F, van der Poel Aernout P P, Jansen P et al. 2016 Phys. Rev. Lett. 117 253201 |
[36] | Ning C G and Lu Y Z 2022 J. Phys. Chem. Ref. Data 51 021502 |
[37] | Baron J, Campbell W C, DeMille D et al. 2014 Science 343 269 |
[38] | Luo Z H, Chen X L, Li J M et al. 2016 Phys. Rev. A 93 020501 |
[39] | Tang R L, Fu X X, and Ning C G 2018 J. Chem. Phys. 149 134304 |
[40] | Dick B 2014 Phys. Chem. Chem. Phys. 16 570 |
[41] | Dick B 2019 Phys. Chem. Chem. Phys. 21 19499 |
[42] | Fischer C F, Godefroid M, Brage T et al. 2016 J. Phys. B 49 182004 |
[43] | Froese F C, Gaigalas G, Jönsson P et al. 2019 Comput. Phys. Commun. 237 184 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|