Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 093101    DOI: 10.1088/0256-307X/40/9/093101
ATOMIC AND MOLECULAR PHYSICS |
Energy Levels and Transition Rates for Laser Cooling Os$^{-}$ and a General Approach to Produce Cold Atoms and Molecules
Yuzhu Lu1, Rui Zhang1, Changxian Song2, Chongyang Chen2, Ran Si2*, and Chuangang Ning1,3*
1Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
2Shanghai EBIT Lab, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
3Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
Cite this article:   
Yuzhu Lu, Rui Zhang, Changxian Song et al  2023 Chin. Phys. Lett. 40 093101
Download: PDF(2739KB)   PDF(mobile)(2765KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-resolution photoelectron energy spectra of osmium anions are obtained using the slow-electron velocity-map imaging method. The energy levels of excited states $^{4}\!F_{7/2}$, $^{4}\!F_{5/2}$ and $^{4}\!F_{3/2}$ of Os$^{-}$ are determined to be 148.730(13), 155.69(15), and 176.76(13) THz [or 4961.09(41), 5193.4(49), and 5896.1(42) cm$^{-1}$], respectively. The lifetime of the opposite-parity excited state $^{6}\!D_{9/2}^{\rm o}$ is determined to be 201(10) µs using a cold ion trap, about 15 times shorter than the previous result 3(1) ms. Our high-level multi-configuration Dirac–Hartree–Fock calculations yield a theoretical lifetime 527 µs. Our work shows that the laser cooling rate of Os$^{-}$ is as fast as that of Th$^{-}$. The advantages of Os$^{-}$ are its near-IR range cooling transition and simple electronic structure, which make Os$^{-}$ a promising candidate for laser cooling of negative ions. We propose a general approach to produce cold atoms and molecules based on the sympathetic cooling of negative ions in combination with a threshold photodetachment.
Received: 25 May 2023      Published: 30 August 2023
PACS:  32.80.Gc (Photodetachment of atomic negative ions)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  37.10.Rs (Ion cooling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/093101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/093101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuzhu Lu
Rui Zhang
Changxian Song
Chongyang Chen
Ran Si
and Chuangang Ning
[1] Bilodeau R C and Haugen H K 2000 Phys. Rev. Lett. 85 534
[2] Warring U, Canali C, Fischer A et al. 2009 J. Phys.: Conf. Ser. 194 152022
[3] Warring U, Amoretti M, Canali C et al. 2009 Phys. Rev. Lett. 102 043001
[4] Kellerbauer A and Fritzsche S 2012 J. Phys.: Conf. Ser. 388 012023
[5] Kellerbauer A, Fischer A, and Warring U 2014 Phys. Rev. A 89 043430
[6] Kellerbauer A, Canali C, Fischer A et al. 2011 Phys. Rev. A 84 062510
[7] O'Malley S M and Beck D R 2010 Phys. Rev. A 81 032503
[8] Pan L and Beck D R 2010 Phys. Rev. A 82 014501
[9] Shi Z L, Li Z L, Wang P J et al. 2018 Chin. Phys. Lett. 35 123701
[10] Zhang J, Deng K, Luo J et al. 2017 Chin. Phys. Lett. 34 050601
[11] Chen T, Du L J, Song H F et al. 2015 Chin. Phys. Lett. 32 083701
[12] Wang S G, Zhang J W, Miao K et al. 2013 Chin. Phys. Lett. 30 013703
[13] Wang B, Lü D S, Qu Q Z et al. 2011 Chin. Phys. Lett. 28 063701
[14] Yzombard P, Hamamda M, Gerber S et al. 2015 Phys. Rev. Lett. 114 213001
[15] Fischer A, Canali C, Warring U et al. 2010 Phys. Rev. Lett. 104 073004
[16] Walter C W, Gibson N D, Janczak C M et al. 2007 Phys. Rev. A 76 052702
[17] Walter C W, Gibson N D, Li Y G et al. 2011 Phys. Rev. A 84 032514
[18] Walter C W, Gibson N D, Matyas D J et al. 2014 Phys. Rev. Lett. 113 063001
[19] Cerchiari G, Kellerbauer A, Safronova M S et al. 2018 Phys. Rev. Lett. 120 133205
[20] Jordan E, Cerchiari G, Fritzsche S et al. 2015 Phys. Rev. Lett. 115 113001
[21] Kellerbauer A, Cerchiari G, Jordan E et al. 2015 Phys. Scr. 90 054014
[22] Tang R L, Si R, Fei Z J et al. 2019 Phys. Rev. Lett. 123 203002
[23] Tang R L, Si R, Fei Z J et al. 2021 Phys. Rev. A 103 042817
[24] Ni K K, Ospelkaus S, de Miranda M H G et al. 2008 Science 322 231
[25]Krems R, Friedrich B, and Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (Boca Raton: CRC Press)
[26] Yang H et al. 2022 Science 378 1009
[27] Barry J F, Shuman E S, Norrgard E B et al. 2012 Phys. Rev. Lett. 108 103002
[28] Anderegg L, Augenbraun B L, Chae E et al. 2017 Phys. Rev. Lett. 119 103201
[29] Anderegg L, Burchesky S, Bao Y et al. 2021 Science 373 779
[30] Ding S Q, Wu Y W, Finneran I A, Burau J J, and Ye J 2020 Phys. Rev. X 10 021049
[31] Kozyryev I et al. 2017 Phys. Rev. Lett. 118 173201
[32] Vilas N B, Hallas C, Anderegg L et al. 2022 Nature 606 70
[33] Mitra D, Vilas N B, Hallas C et al. 2020 Science 369 1366
[34] Prehn A, Ibrügger M, Glöckner R et al. 2016 Phys. Rev. Lett. 116 063005
[35] Cheng C F, van der Poel Aernout P P, Jansen P et al. 2016 Phys. Rev. Lett. 117 253201
[36] Ning C G and Lu Y Z 2022 J. Phys. Chem. Ref. Data 51 021502
[37] Baron J, Campbell W C, DeMille D et al. 2014 Science 343 269
[38] Luo Z H, Chen X L, Li J M et al. 2016 Phys. Rev. A 93 020501
[39] Tang R L, Fu X X, and Ning C G 2018 J. Chem. Phys. 149 134304
[40] Dick B 2014 Phys. Chem. Chem. Phys. 16 570
[41] Dick B 2019 Phys. Chem. Chem. Phys. 21 19499
[42] Fischer C F, Godefroid M, Brage T et al. 2016 J. Phys. B 49 182004
[43] Froese F C, Gaigalas G, Jönsson P et al. 2019 Comput. Phys. Commun. 237 184
Related articles from Frontiers Journals
[1] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 093101
[2] Muhammad Haneef, Saleh Mohammad, Jehan Akbar, Suneela Arif, Muhammad Zahir, Humayun Khan. Detached Electron Spectra from H near a Partially Reflecting Spherical Surface[J]. Chin. Phys. Lett., 2012, 29(7): 093101
[3] Muhammad Haneef*,Saleh Mohammad,Suneela Arif,Jehan Akbar,Nasrullah Shah,Imran Ullah. Photodetachment of Di-atomic Negative Ion H2 near a Surface[J]. Chin. Phys. Lett., 2012, 29(5): 093101
[4] M. Haneef, Iftikhar Ahmad**, A. Afaq, A. Rahman. Photodetachment of H near a Hard Spherical Surface[J]. Chin. Phys. Lett., 2012, 29(1): 093101
[5] WANG De-Hua, HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2009, 26(9): 093101
[6] A. Afaq. Photodetachment of H- near a Partially Reflecting Surface---I[J]. Chin. Phys. Lett., 2008, 25(2): 093101
[7] WANG De-Hua. Photodetachment of H- near Elastic Surface in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2007, 24(7): 093101
[8] WANG De-Hua. Photodetachment of a Negative Hydrogen Molecular Ion near an Interface[J]. Chin. Phys. Lett., 2007, 24(2): 093101
[9] YANG Guang-Can, LIU Yong, CHI Xian-Xing. Photodetachment of H- in a Static Electric Field near a Surface[J]. Chin. Phys. Lett., 2005, 22(9): 093101
[10] ZHAO Zeng-xiu, YUAN Jian-min, SUN Yong-sheng. Electron Interaction with Lithium Atoms and Electron Impact Broadening of the Lithium Resonance Line[J]. Chin. Phys. Lett., 1999, 16(12): 093101
Viewed
Full text


Abstract