CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$ |
Heming Zha1,2, Wei Li3, Gaojie Zhang4,5, Wenjing Liu1,2, Liwei Deng1,2, Qi Jiang6, Mao Ye1,2,7, Hao Wu4,5, Haixin Chang4,5,8*, and Shan Qiao1,2,9* |
1State Key Laboratory of Functional Materials for Informatics, Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3Department of Physics and State Key Laboratory of Surfac Physics, Fudan University, Shanghai 200433, China 4State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 5Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 6Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China 7Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China 8Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China 9School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Heming Zha, Wei Li, Gaojie Zhang et al 2023 Chin. Phys. Lett. 40 087501 |
|
|
Abstract Fe$_{3}$GaTe$_{2}$, a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional (2D) magnetic materials, has attracted significant attention and makes it a promising candidate for next-generation spintronic applications. Compared with Fe$_{3}$GeTe$_{2}$, which has the similar crystal structure, the mechanism of the enhanced ferromagnetic properties in Fe$_{3}$GaTe$_{2}$ is still unclear and needs to be investigated. Here, by using x-ray magnetic circular dichroism measurements, we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms. Our first-principles calculations reveal that Fe$_{3}$GaTe$_{2}$ has van Hove singularities at the Fermi level in nonmagnetic state, resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions. In addition, the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms. These findings indicate the increase of both the itinerate and local moments in Fe$_{3}$GaTe$_{2}$ in view of Stoner and exchange interaction models, which results in the enhancement of the overall magnetism and a higher Curie temperature. Our work provides insight into the underlying mechanism of Fe$_{3}$GaTe$_{2}$'s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future.
|
|
Received: 13 May 2023
Editors' Suggestion
Published: 13 August 2023
|
|
PACS: |
75.50.-y
|
(Studies of specific magnetic materials)
|
|
87.64.ku
|
(Magnetic circular dichroism)
|
|
63.20.dk
|
(First-principles theory)
|
|
|
|
|
[1] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[2] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 |
[3] | Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002 |
[4] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[5] | Fei Z Y, Huang B V, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W, Cobden D H, Chu J H, and Xu X D 2018 Nat. Mater. 17 778 |
[6] | Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science 360 1214 |
[7] | Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-rossier J, and Jarillo-herrero P 2018 Science 360 1218 |
[8] | Arai M, Moriya R, Yabuki N, Masubuchi S, Ueno K, and Machida T 2015 Appl. Phys. Lett. 107 103107 |
[9] | Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, and Tsen A W 2018 Nano Lett. 18 4885 |
[10] | Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, and Zhang Z 2018 Nat. Nanotechnol. 13 554 |
[11] | Givord D, Li H S, and Moreau J M 1984 Solid State Commun. 50 497 |
[12] | Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, and Ohno H 2010 Nat. Mater. 9 721 |
[13] | Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, and Eda G 2020 Nat. Electron. 3 460 |
[14] | Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, and Xu X 2019 Nat. Mater. 18 1298 |
[15] | Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai M K, and Shan J 2019 Nat. Mater. 18 1303 |
[16] | Wang Y, Wang C, Liang S J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S W, Wang L, Chen M, Liu Z, Cheng B, Ji W, and Miao F 2020 Adv. Mater. 32 2004533 |
[17] | Hu L, Zhou J, Hou Z, Su W, Yang B, Li L, and Yan M 2021 Mater. Horiz. 8 3306 |
[18] | Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W, He L, Zhang R, and Xu Y 2020 Phys. Rev. Lett. 125 267205 |
[19] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W, and Chang H X 2022 Nat. Commun. 13 5067 |
[20] | Chen B, Yang J, Wang H, Imai M, Ohta H, Michioka C, Yoshimura K, and Fang M 2013 J. Phys. Soc. Jpn. 82 124711 |
[21] | Xu X, Li Y W, Duan S R, Zhang S L, Chen Y J, Kang L, Liang A J, Chen C, Xia W, Xu Y, Malinowski P, Xu X D, Chu J H, Li G, Guo Y F, Liu Z K, Yang L X, and Chen Y L 2020 Phys. Rev. B 101 201104 |
[22] | Chen C T, Idzerda Y U, Lin H J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E, and Sette F 1995 Phys. Rev. Lett. 75 152 |
[23] | Dunn J H, Arvanitis D, Martensson N, Tischer M, May F, Russo M, and Baberschke K 1995 J. Phys.: Condens. Matter 7 1111 |
[24] | Chen J G 1997 Surf. Sci. Rep. 30 1 |
[25] | Stavitski E and De Groot F M F 2010 Micron 41 687 |
[26] | Thole B T, Carra P, Sette F, and van der Laan G 1992 Phys. Rev. Lett. 68 1943 |
[27] | Carra P, Thole B T, Altarelli M, and Wang X 1993 Phys. Rev. Lett. 70 694 |
[28] | Wu R and Freeman A J 1994 Phys. Rev. Lett. 73 1994 |
[29] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[30] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[31] | Wu Q S, Zhang S N, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[32] | Perdew J P, McMullen E R, and Zunger A 1981 Phys. Rev. A 23 2785 |
[33] | Li X L, Zhu M, Wang Y Y, Zheng F X, Dong J T, Zhou Y, You L, and Zhang J 2023 Appl. Phys. Lett. 122 082404 |
[34] | Blundell S and Thouless D 2003 Am. J. Phys. 71 94 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|