CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nonlinear Photocurrent Responses in Janus WSSe Monolayer |
Meng Chen1†, Sheng-Bin Yu2,3†, Dong Zhang2,3, and Jun Li1* |
1Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China 2SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Meng Chen, Sheng-Bin Yu, Dong Zhang et al 2023 Chin. Phys. Lett. 40 087201 |
|
|
Abstract Janus WSSe monolayer is a novel two-dimensional (2D) material that breaks the out-of-plane mirror symmetry and has a large built-in electric field. These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties, making it a promising material platform for various spintronic and optoelectronic device applications. In recent years, nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials, indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials. In this work, we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method. It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients, which is distinct from the non-Janus structures. Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field. Thus, the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.
|
|
Received: 30 April 2023
Published: 02 August 2023
|
|
PACS: |
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 |
[2] | Geim A K and Grigorieva I V 2013 Nature 499 419 |
[3] | Castellanos-Gomez A 2016 Nat. Photon. 10 202 |
[4] | Xia F N, Wang H, Xiao D, Dubey M, and Ramasubramaniam A 2014 Nat. Photon. 8 899 |
[5] | Lin X Y, Yang W, Wang K L, and Zhao W S 2019 Nat. Electron. 2 274 |
[6] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033 |
[7] | Xu X D, Yao W, Xiao D, and Heinz T F 2014 Nat. Phys. 10 343 |
[8] | Mak K F and Shan J 2016 Nat. Photon. 10 216 |
[9] | Chen Y D, Huang Y W, Lou W K, Cai Y Y, and Chang K 2020 Phys. Rev. B 102 165413 |
[10] | Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744 |
[11] | Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano 11 8192 |
[12] | Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, and Geohegan D B 2020 ACS Nano 14 3896 |
[13] | Han Z C, Wei T Y, Xiao Q Y, Zhong X Y, Xiang D, and Liu T 2022 Appl. Phys. Lett. 120 221901 |
[14] | Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, and Tongay S 2020 Adv. Mater. 32 2006320 |
[15] | Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, and Tongay S 2022 Adv. Mater. 34 2106222 |
[16] | Yao Q F, Cai J, Tong W Y, Gong S J, Wang J Q, Wan X, Duan C G, and Chu J H 2017 Phys. Rev. B 95 165401 |
[17] | Yu S B, Zhou M, Zhang D, and Chang K 2021 Phys. Rev. B 104 075435 |
[18] | Dong L, Lou J, and Shenoy V B 2017 ACS Nano 11 8242 |
[19] | Zheng T, Lin Y C, Yu Y L, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G, Geohegan D B, Ni Z H, Xiao K, and Zhao H 2021 Nano Lett. 21 931 |
[20] | Zhang K X, Guo Y F, Ji Q Q, Lu A Y, Su C, Wang H, Puretzky A A, Geohegan D B, Qian X F, Fang S, Kaxiras E, Kong J, and Huang S X 2020 J. Am. Chem. Soc. 142 17499 |
[21] | Yu S B, Sun S H, Zhou M, Zhang D, and Chang K 2023 Phys. Rev. B 107 125426 |
[22] | Huang Y X, Feng X L, Wang H, Xiao C, and Yang S A 2023 Phys. Rev. Lett. 103 126303 |
[23] | Wei Y D, Xu X D, Wang S S, Li W Q, and Jiang Y Y 2019 Phys. Chem. Chem. Phys. 21 21022 |
[24] | Xu H W, Wang H, Zhou J, Guo Y F, Kong J, and Li J 2021 npj Comput. Mater. 7 31 |
[25] | Strasser A, Wang H, and Qian X F 2022 Nano Lett. 22 4145 |
[26] | Dai Z B and Rappe A M 2023 Chem. Phys. Rev. 4 011303 |
[27] | Karmakar S, Biswas R, and Saha-Dasgupta T 2023 Phys. Rev. B 107 075403 |
[28] | Pike N A and Pachter R J 2022 J. Phys. Chem. C 126 16243 |
[29] | Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T, and Mermillod-Blondin A 2020 Nat. Phys. 16 1035 |
[30] | Qian C, Yu C, Jiang S C, Zhang T, Gao J C, Shi S, Pi H Q, Weng H M, and Lu R F 2022 Phys. Rev. X 12 021030 |
[31] | Ma Q, Grushin A G, and Burch K S 2021 Nat. Mater. 20 1601 |
[32] | Yagmurcukardes M, Qin Y, Ozen S, Sayyad M, Peeters F M, Tongay S, and Sahin H 2020 Appl. Phys. Rev. 7 011311 |
[33] | Nguyen H T T, Vi V T T, Vu T V, Hieu N V, Lu D V, Rai D P, and Binh N T T 2020 RSC Adv. 10 44785 |
[34] | Vo D D, Vu T V, Al-Qaisi S, Tong H D, Le T S, Nguyen C V, Phuc H V, Luong H L, Jappor H R, Obeid M M, and Hieu N N 2020 Superlattices Microstruct. 147 106683 |
[35] | Nhan L C, Nguyen C Q, Hieu N V, Phuc H V, Nguyen C V, Hieu N N, Vu T V, and Nguyen H T T 2021 Optik 238 166761 |
[36] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 |
[37] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[38] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 |
[39] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[40] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[41] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[42] | Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067 |
[43] | Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 |
[44] | Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Iba N A J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 |
[45] | Sipe J E and Shkrebtii A I 2000 Phys. Rev. B 61 5337 |
[46] | Wang C, Liu X Y, Kang L, Gu B L, Xu Y, and Duan W H 2017 Phys. Rev. B 96 115147 |
[47] | Ibañez-Azpiroz J, Tsirkin S S, and Souza I 2018 Phys. Rev. B 97 245143 |
[48] | Xia C X, Xiong W Q, Du J, Wang T X, Peng Y T, and Li J B 2018 Phys. Rev. B 98 165424 |
[49] | Zhou W Z, ChenJ Y, Yang Z X, Liu J W, and Ouyang F P 2019 Phys. Rev. B 99 075160 |
[50] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[51] | Souza I, Marzari N, and Vanderbilt D 2001 Phys. Rev. B 65 035109 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|