Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 086102    DOI: 10.1088/0256-307X/40/8/086102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Route to Stabilize Cubic Gauche Polynitrogen to Ambient Conditions via Surface Saturation by Hydrogen
Guo Chen1,2†, Caoping Niu1,2†, Wenming Xia1,2, Jie Zhang1, Zhi Zeng1,2, and Xianlong Wang1,2*
1Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
2University of Science and Technology of China, Hefei 230026, China
Cite this article:   
Guo Chen, Caoping Niu, Wenming Xia et al  2023 Chin. Phys. Lett. 40 086102
Download: PDF(10634KB)   PDF(mobile)(11143KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cubic gauche polynitrogen (cg-N) is an attractive high-energy density material. However, high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions. Here, the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations. Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K, especially (110) surface will collapse completely just after structural relaxation, whereas the decompositions of surfaces can be suppressed by applying pressure, indicating that surface instability causes the cg-N decomposition at low pressure. Due to the saturation of dangling bonds and transferring electrons to the surfaces, saturation with H can stabilize surfaces under ambient conditions, while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces. This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.
Received: 25 May 2023      Express Letter Published: 22 July 2023
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  62.50.-p (High-pressure effects in solids and liquids)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.35.Md (Surface thermodynamics, surface energies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/086102       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/086102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo Chen
Caoping Niu
Wenming Xia
Jie Zhang
Zhi Zeng
and Xianlong Wang
[1] Eremets M I, Hemley R J, Mao H, and Gregoryanz E 2001 Nature 411 170
[2] Ma Y M, Oganov A R, Li Z W, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501
[3] Sun J, Martinez-Canales M, Klug D D, Pickard C J, and Needs R J 2013 Phys. Rev. Lett. 111 175502
[4] Nordlund K, Krasheninnikov A, Juslin N, Nord J, and Albe K 2004 Europhys. Lett. 65 400
[5] Abou-Rachid H, Hu A, Timoshevskii V, Song Y, and Lussier L S 2008 Phys. Rev. Lett. 100 196401
[6] Adeleke A A, Greschner M J, Majumdar A, Wan B, Liu H, Li Z, Gou H, and Yao Y 2017 Phys. Rev. B 96 224104
[7] Alemany M M G and Martins J L 2003 Phys. Rev. B 68 024110
[8] Katzke H and Tolédano P 2008 Phys. Rev. B 78 064103
[9] Zhang L J, Wang Y C, Lv J, and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[10] Yao Y S, Tse J S, and Tanaka K 2008 Phys. Rev. B 77 052103
[11] Li Q, Rellán-Piñeiro M, Almora-Barrios N, Garcia-Ratés M, Remediakis I N, and López N 2017 Nanoscale 9 13089
[12] Goncharov A F, Gregoryanz E, Mao H, Liu Z, and Hemley R J 2000 Phys. Rev. Lett. 85 1262
[13] Boates B and Bonev S A 2009 Phys. Rev. Lett. 102 015701
[14] Boates B and Bonev S A 2011 Phys. Rev. B 83 174114
[15] Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H, and Hemley R J 2007 J. Chem. Phys. 126 184505
[16] Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K, and Hemley R J 2004 J. Chem. Phys. 121 11296
[17] Zahariev F, Dudiy S V, Hooper J, Zhang F, and Woo T K 2006 Phys. Rev. Lett. 97 155503
[18] Zahariev F, Hooper J, Alavi S, Zhang F, and Woo T K 2007 Phys. Rev. B 75 140101
[19] Hirshberg B, Gerber R B, and Krylov A I 2014 Nat. Chem. 6 52
[20] Zhang J, Zeng Z, Lin H, and Li Y 2014 Sci. Rep. 4 4358
[21] Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, and Zhou C Y 2020 Chin. Phys. Lett. 37 068101
[22] Li Y W, Feng X L, Liu H Y, Hao J, Redfern S A T, Lei W W, Liu D, and Ma Y M 2018 Nat. Commun. 9 722
[23] Salke N P, Xia K, Fu S, Zhang Y, Greenberg E, Prakapenka V B, Liu J, Sun J, and Lin J F 2021 Phys. Rev. Lett. 126 065702
[24] Liu Y, Su H, Niu C, Wang X, Zhang J, Ge Z, and Li Y 2020 Chin. Phys. B 29 106201
[25] Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102
[26] Ding C, Wang J, Han Y, Yuan J, Gao H, and Sun J 2022 Chin. Phys. Lett. 39 036101
[27] Lei L, Pu M, Feng L, Qi L, and Zhang L 2018 Chin. J. High Press. Phys. 32 020102 (in Chinese)
[28] Yakub L N 2016 Low Temp. Phys. 42 1
[29] Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419
[30] Fan C M, Liu S, Liu J Y et al. 2022 Chin. Phys. Lett. 39 026401
[31] Frost M, Howie R T, Dalladay-Simpson P, Goncharov A F, and Gregoryanz E 2016 Phys. Rev. B 93 024113
[32] Liu S, Pu M, Tang Q, Zhang F, Wu B, and Lei L 2020 Solid State Commun. 310 113843
[33] Pu M F, Liu S, Lei L, Zhang F, Feng L H, Qi L, and Zhang L L 2019 Solid State Commun. 298 113645
[34] Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q, and Sun J 2019 J. Phys. Chem. Lett. 10 6166
[35] Mattson W D, Sanchez-Portal D, Chiesa S, and Martin R M 2004 Phys. Rev. Lett. 93 125501
[36] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[37] Zahariev F, Hu A, Hooper J, Zhang F, and Woo T 2005 Phys. Rev. B 72 214108
[38] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702
[39] Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J, and Ma Y M 2012 Phys. Rev. Lett. 109 175502
[40] Zhang J, Wang X, Yang K, Cheng Y, and Zeng Z 2018 Sci. Rep. 8 13144
[41] Zhang J, Niu C, Zhang H, Zhao J, Wang X, and Zeng Z 2021 J. Phys. Chem. Lett. 12 5731
[42] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558
[43] Tomasino D, Kim M, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502
[44] Ji C, Adeleke A A, Yang L X et al. 2020 Sci. Adv. 6 eaba9206
[45] Laniel D, Geneste G, Weck G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[46] Zhang T, Zhang S, Chen Q, and Peng L M 2006 Phys. Rev. B 73 094105
[47] Christe K O 2007 Propell.Explos. Pyrotech. 32 194
[48] Fan X L, Fang X L, Ran R X, and Lau W M 2014 Physica E 59 248
[49] Saranin A A, Zotov A V, Ignatovich K V, Lifshits V G, Numata T, Kubo O, Tani H, Katayama M, and Oura K 1997 Phys. Rev. B 56 1017
[50] Benchafia E M, Yao Z, Yuan G, Chou T, Piao H, Wang X, and Iqbal Z 2017 Nat. Commun. 8 930
[51] Liu S, Pu M, Zhang F, and Lei L 2019 J. Light Scattering 31 235 (in Chinese)
[52] Pauling L 1932 J. Am. Chem. Soc. 54 3570
[53] Inamoto N and Masuda S 1982 Chem. Lett. 11 1003
Related articles from Frontiers Journals
[1] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 086102
[2] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 086102
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 086102
[4] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 086102
[5] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 086102
[6] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 086102
[7] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 086102
[8] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 086102
[9] Mei-Zhe Lv, Bin Xu, Li-Chao Cai, Feng Jia, Xing-Dong Yuan. Analysis of Transition Mechanism of Cubic Boron Nitride Single Crystals under High Pressure-High Temperature with Valence Electron Structure Calculation[J]. Chin. Phys. Lett., 2019, 36(1): 086102
[10] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 086102
[11] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 086102
[12] Kanokwan Kanchiang, Phakkhananan Pakawanit, Rattikorn Yimnirun. Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation[J]. Chin. Phys. Lett., 2017, 34(8): 086102
[13] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 086102
[14] B. Merabet, H. Alamri, M. Djermouni, A. Zaoui, S. Kacimi, A. Boukortt, M. Bejar. Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study[J]. Chin. Phys. Lett., 2017, 34(1): 086102
[15] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 086102
Viewed
Full text


Abstract