CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Light-Induced Phonon-Mediated Magnetization in Monolayer MoS$_{2}$ |
Shengjie Zhang1,2, Yufei Pei4, Shiqi Hu1, Na Wu1,2, Da-Qiang Chen1,2, Chao Lian5,6, and Sheng Meng1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Department of Physics, University of Oxford, Oxford OX2 6QA, United Kingdom 5Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA 6Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
|
|
Cite this article: |
Shengjie Zhang, Yufei Pei, Shiqi Hu et al 2023 Chin. Phys. Lett. 40 077502 |
|
|
Abstract Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology. Recent progresses include ultrafast demagnetization, magnetic switching, and magnetic phase transitions, while the ultrafast generation of magnetism is hardly achieved. Here, a strong light-induced magnetization (up to $0.86\mu_{\scriptscriptstyle{\rm B}}$ per formula unit) is identified in non-magnetic monolayer molybdenum disulfide (MoS$_{2}$). With the state-of-the-art time-dependent density functional theory simulations, we demonstrate that the out-of-plane magnetization can be induced by circularly polarized laser, where chiral phonons play a vital role. The phonons strongly modulate spin-orbital interactions and promote electronic transitions between the two conduction band states, achieving an effective magnetic field $\sim$ $380$ T. Our study provides important insights into the ultrafast magnetization and spin-phonon coupling dynamics, facilitating effective light-controlled valleytronics and magnetism.
|
|
Received: 13 April 2023
Express Letter
Published: 01 June 2023
|
|
PACS: |
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
61.30.Gd
|
(Orientational order of liquid crystals; electric and magnetic field effects on order)
|
|
|
|
|
[1] | Huang B V, Clark G, Navarro-Moratalla E et al. 2017 Nature 546 270 |
[2] | Gong C, Li L, Li Z et al. 2017 Nature 546 265 |
[3] | He J J and Frauenheim T 2020 J. Phys. Chem. Lett. 11 6219 |
[4] | Deng Y J, Yu Y J, Song Y C et al. 2018 Nature 563 94 |
[5] | O'Hara D J, Zhu T, Trout A H et al. 2018 Nano Lett. 18 3125 |
[6] | Beaurepaire E, Merle J C, Daunois A, and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 |
[7] | Kirilyuk A, Kimel A V, and Rasing T 2010 Rev. Mod. Phys. 82 2731 |
[8] | Krieger K, Elliott P, Muller T, Singh N, Dewhurst J K, Gross E K U, and Sharma S 2017 J. Phys.: Condens. Matter 29 224001 |
[9] | Chekhov A L, Behovits Y, Heitz J J F et al. 2021 Phys. Rev. X 11 041055 |
[10] | Tauchert S R, Volkov M, Ehberger D et al. 2022 Nature 602 73 |
[11] | Mishra K, Rowan-Robinson R M, Ciuciulkaite A, Davies C S, Dmitriev A, Kapaklis V, Kimel A V, and Kirilyuk A 2022 Nano Lett. 22 9773 |
[12] | Zhang W, Lin J X, Huang T X, Malinowski G, Hehn M, Xu Y, Mangin S, and Zhao W S 2022 Phys. Rev. B 105 054410 |
[13] | Zhang P Y, Chung T F, Li Q W et al. 2022 Nat. Mater. 21 1373 |
[14] | Jakobs F and Atxitia U 2022 Phys. Rev. Lett. 129 037203 |
[15] | Stupakiewicz A, Davies C S, Szerenos K, Afanasiev D, Rabinovich K S, Boris A V, Caviglia A, Kimel A V, and Kirilyuk A 2021 Nat. Phys. 17 489 |
[16] | Selzer S, Salemi L, Deák A, Simon E, Szunyogh L, Oppeneer P M, and Nowak U 2022 Phys. Rev. B 105 174416 |
[17] | Lefkidis G and Hübner W 2007 Phys. Rev. B 76 014418 |
[18] | Disa A S, Fechner M, Nova T F, Liu B, Först M, Prabhakaran D, Radaelli P G, and Cavalleri A 2020 Nat. Phys. 16 937 |
[19] | Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, and Cavalleri A 2016 Nat. Phys. 13 132 |
[20] | You W J, Tengdin P, Chen C et al. 2018 Phys. Rev. Lett. 121 077204 |
[21] | Li G, Medapalli R, Mentink J H et al. 2022 Nat. Commun. 13 2998 |
[22] | Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 |
[23] | Xiao D, Liu G B, Feng W X, Xu X D, and Yao W 2012 Phys. Rev. Lett. 108 196802 |
[24] | Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, and Marie X 2014 Phys. Rev. B 90 161302(R) |
[25] | Kumar A, Yagodkin D, Stetzuhn N, Kovalchuk S, Melnikov A, Elliott P, Sharma S, Gahl C, and Bolotin K I 2021 Nano Lett. 21 7123 |
[26] | Cao T, Wang G, Han W et al. 2012 Nat. Commun. 3 887 |
[27] | Cai Y Q, Lan J H, Zhang G, and Zhang Y W 2014 Phys. Rev. B 89 035438 |
[28] | Hahn S, Kim K, Kim K et al. 2019 Nature 570 496 |
[29] | Lian C, Guan M X, Hu S Q, Zhang J, and Meng S 2018 Adv. Theory Simul. 1 201800055 |
[30] | Ullrich C A 2011 Time-Dependent Density-Functional Theory Concepts and Applications (Oxford: Oxford University Press) |
[31] | Krieger K, Dewhurst J K, Elliott P, Sharma S, and Gross E K U 2015 J. Chem. Theory Comput. 11 4870 |
[32] | Bornemann F A, Nettesheim P, and Schutte C 1996 J. Chem. Phys. 105 1074 |
[33] | Zhu Z Y, Cheng Y C, and Schwingenschlögl U 2011 Phys. Rev. B 84 153402 |
[34] | Shi H L, Pan H, Zhang Y W, and Yakobson B I 2013 Phys. Rev. B 87 155304 |
[35] | Kadantsev E S and Hawrylak P 2012 Solid State Commun. 152 909 |
[36] | Zhang L F and Niu Q 2015 Phys. Rev. Lett. 115 115502 |
[37] | Du L J, Tang J, Zhao Y C et al. 2019 Adv. Funct. Mater. 29 1904734 |
[38] | Shin D, Hubener H, De Giovannini U, Jin H, Rubio A, and Park N 2018 Nat. Commun. 9 638 |
[39] | Disa A S, Nova T F, and Cavalleri A 2021 Nat. Phys. 17 1087 |
[40] | Jiang X, Zheng Q J, Lan Z G, Saidi W A, Ren X G, and Zhao J 2021 Sci. Adv. 7 eabf3759 |
[41] | Juraschek D M, Narang P, and Spaldin N A 2020 Phys. Rev. Res. 2 043035 |
[42] | Juraschek D M, Neuman T, and Narang P 2022 Phys. Rev. Res. 4 013129 |
[43] | Griffiths D J and Schroeter D F 2018 Introduction to Quantum Mechanics (New York: Prentice Hall) |
[44] | Okyay M S, Kulahlioglu A H, Kochan D, and Park N 2020 Phys. Rev. B 102 104304 |
[45] | Neufeld O, Tancogne-Dejean N, De Giovannini U, Hübener H, and Rubio A 2023 npj Comput. Mater. 9 39 |
[46] | Hertel R 2006 J. Magn. Magn. Mater. 303 L1 |
[47] | Pershan P S, van der Ziel J P, and Malmstrom L D 1966 Phys. Rev. 143 574 |
[48] | Mikhaylovskiy R V, Hendry E, and Kruglyak V V 2012 Phys. Rev. B 86 100405 |
[49] | Yun W S, Han S W, Hong S C, Kim I G, and Lee J D 2012 Phys. Rev. B 85 033305 |
[50] | Yeh P C, Jin W, Zaki N et al. 2015 Phys. Rev. B 91 041407 |
[51] | Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|