Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 075201    DOI: 10.1088/0256-307X/40/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Effects of Plasma Boundary Shape on Explosive Bursts Triggered by Tearing Mode in Toroidal Tokamak Plasmas with Reversed Magnetic Shear
Haoyu Wang, Zheng-Xiong Wang, Tong Liu*, and Xiao-Long Zhu
Key Laboratory of Materials Modification by Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Haoyu Wang, Zheng-Xiong Wang, Tong Liu et al  2023 Chin. Phys. Lett. 40 075201
Download: PDF(39020KB)   PDF(mobile)(39062KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Numerical research is conducted to investigate the effects of plasma boundary shape on the tearing mode triggering explosive bursts in toroidal tokamak plasmas. In this work, $m/n=2/1$ mode is responsible for the triggering of the explosive burst. Plasma boundary shape can be adjusted via the adjustment of the parameters triangularity ${\delta}$ and elongation ${\kappa}$. The investigations are conducted both under low $\beta$ (close to zero) and under finite $\beta$ regimes. In the low $\beta$ regime, triangularity and elongation both have stabilizing effect on the explosive burst, and the stabilizing effect of elongation is stronger. Under a large elongation (${\kappa =2.0}$), the elongation effect can evidently enhance the stabilizing effect in a positive triangularity regime, but barely affects the stabilizing effect in a negative triangularity regime. In the finite $\beta$ regime, the explosive burst is delayed in comparison with that in the low $\beta$ regime. Similar to the low $\beta$ cases, the effects of triangularity and elongation both are stabilizing. Under a large elongation (${\kappa =2.0}$), the elongation effect can evidently enhance the stabilizing effect on the explosive burst in a positive triangularity regime, but impair the stabilizing effect in a negative triangularity regime. The explosive burst disappears in the large triangularity case (${\delta =0.5}$), indicating that the explosive burst can be effectively prevented in experiments via carefully adjusting plasma boundary shape. Moreover, strong magnetic stochasticity appears in the negative triangularity case during the nonlinear phase.
Received: 10 April 2023      Published: 27 June 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/075201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haoyu Wang
Zheng-Xiong Wang
Tong Liu
and Xiao-Long Zhu
[1] Hender T C, Wesley J C, Gruber O, Gryaznevich M, Giruzzi G, Günter S, Hayash N, Helander P, Hegna C C, Howell D F, Humphreys D A, Huysmans G T A, Bialek J, Hyatt A W, Isayama A, Jardin S C, Kawano Y, Kellman A, Kessel C, Koslowski H R, La H R J, Lazzaro E, Liu Y Q, Bondeson A, Lukash V, Manickam J, Medvedev S, Mertens V, Mirnov S V, Nakamura Y, Navratil G, Okabayashi M, Ozeki T, Paccagnella R, Boozer A H, Pautasso G, Porcelli F, Pustovitov V D, Riccardo V, Sato M, Sauter O, Schaffer M J, Shimada M, Sonato P, Strait E J, Buttery R J, Sugihara M, Takechi M, Turnbull A D, Westerhof E, Whyte D G, Yoshino R, Zohm H, Garofalo A, Goodman T P, Granetz R S, and Gribov Y 2007 Nucl. Fusion 47 S128
[2] Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, and St John H E 2007 Nucl. Fusion 47 S285
[3] Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T, Kubo H, Higashijima S, Naito O, Shirai H, and Fukuda T 2001 Phys. Rev. Lett. 87 085001
[4] Crisanti F, Litaudon X, Mailloux J, Mazon D, Barbato E, Baranov Y, Bécoulet A, Bécoulet M, Challis C D, Conway G D, Dux R, Eriksson L G, Esposito B, Frigione D, Hennequin P, Giroud C, Hawkes N, Huysmans G, Imbeaux F, Joffrin E, Lomas P, Lotte- P, Maget P, Mantsinen M, Moreau D, Rimini F, Riva M, Sarazin Y, Tresset G, Tuccillo A A, and Zastrow K D 2002 Phys. Rev. Lett. 88 145004
[5] Litaudon X, coulet A B, Crisanti F, Wolf R, Baranov Y, Barbato E, coulet M B, Budny R, Castaldo C, Cesario R, Challis C, Conway G, Baar M D, Vries P D, Dux R, Eriksson L, Esposito B, Felton R, Fourment C, Frigione D, Garbet X, Giannella R, Giroud C, Gorini G, Hawkes N, Hellsten T, Hender T, Hennequin P, Hogeweij G, Huysmans G, Imbeaux F, Joffrin E, Lomas P, Lotte P, Maget P, Mailloux J, Mantica P, Mantsinen M, Mazon D, Moreau D, Parail V, Pericoli V, Rachlew E, Riva M, Rimini F, Sarazin Y, Stratton B, Tala T, Tresset G, Tudisco O, Zabeo L, Zastrow K D, and contributors J E 2003 Nucl. Fusion 43 565
[6] Greenfield C M, Murakami M, Ferron J R, Wade M R, Luce T C, Petty C C, Menard J E, Petrie T W, Allen S L, Burrell K H, Casper T A, DeBoo J C, Doyle E J, Garofalo A M, Gorelov I A, Groebner R J, Hobirk J, Hyatt A W, Jayakumar R J, Kessel C E, Haye R J L, Jackson G L, Lao L L, Lohr J, Makowski M A, Pinsker R I, Politzer P A, Prater R, Staebler G M, Strait E J, Taylor T S, West W P, and Team T D D 2004 Plasma Phys. Control. Fusion 46 B213
[7] Pritchett P L, Lee Y C, and Drake J F 1980 Phys. Fluids 23 1368
[8] Wang Z X, Wang X G, Dong J Q, Lei Y A, Long Y X, Mou Z Z, and Qu W X 2007 Phys. Rev. Lett. 99 185004
[9] Ishii Y, Azumi M and Kishimoto Y 2003 Phys. Plasmas 10 3512
[10] Wang X Q and Wang X G 2015 Plasma Phys. Control. Fusion 57 025019
[11] Liu T, Yang J F, Hao G Z, Liu Y Q, Wang Z X, Zheng S, Wang A K, and He H D 2017 Plasma Phys. Control. Fusion 59 065009
[12] Zhang W, Ma Z W, Zhu J, and Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002
[13] Wang Z X, Liu T, and Wei L 2022 Rev. Mod. Plasma Phys. 6 14
[14] Ishii Y, Azumi M, Kurita G, and Tuda T 2000 Phys. Plasmas 7 4477
[15] Ishii Y, Azumi M, and Kishimoto Y 2002 Phys. Rev. Lett. 89 205002
[16] Janvier M, Kishimoto Y, and Li J Q 2011 Phys. Rev. Lett. 107 195001
[17] Wang Z X, Wei L, and Yu F 2015 Nucl. Fusion 55 043005
[18] Zhang W, Lin X, Ma Z W, Lu X Q, and Zhang H W 2020 Phys. Plasmas 27 122509
[19] Zhang W, Ma Z W, and Zhang H W 2020 J. Fusion Energy 39 367
[20] Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, and Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553
[21] Fredrickson E, Bell M, Budny R V, and Synakowski E 2000 Phys. Plasmas 7 4112
[22] Takeji S, Tokuda S, Fujita T, Suzuki T, Isayama A, Ide S, Ishii Y, Kamada Y, Koide Y, Matsumoto T, Oikawa T, Ozeki T, and Sakamoto Y 2002 Nucl. Fusion 42 5
[23] Maget P, Huysmans G T A, Garbet X, Ottaviani M, Lütjens H, and Luciani J F 2007 Phys. Plasmas 14 052509
[24] de Baar M R, Hogeweij G M D, Lopes C N J, Oomens A A M, and Schüller F C 1997 Phys. Rev. Lett. 78 4573
[25] Günter S, Schade S, Maraschek M, Pinches S, Strumberger E, Wolf R, Yu Q, and Team A U 2000 Nucl. Fusion 40 1541
[26] Zhang W, Ma Z, Lu X, and Zhang H 2020 Nucl. Fusion 60 126022
[27] Liu T, Wang Z X, Wang J, and Wei L 2018 Nucl. Fusion 58 076026
[28] Liu T W Z X, Wei L, and Wang J 2022 Nucl. Fusion 62 056018
[29] Tang W K, Wang Z X, Wei L, Wang J L, and Lu S S 2020 Nucl. Fusion 60 026015
[30] Wei L, Wang Z X, Wang J, and Yang X 2016 Nucl. Fusion 56 106015
[31] Huang W L and Zhu P 2020 Phys. Plasmas 27 022514
[32] Huang W L and Zhu P 2021 Nucl. Fusion 61 036047
[33] Wang Z X, Tang W K, and Wei L 2022 Plasma Sci. Technol. 24 033001
[34] Wang Z R, Logan N C, Munaretto S, Liu Y Q, Sun Y W, Gu S, Park J K, Hanson J M, Hu Q M, Strait T, Nazikian R, Kolemen E, and Menard J E 2019 Nucl. Fusion 59 024001
[35] Liu T, Wang Z R, Boyer M D, Munaretto S, Wang Z X, Park B H, Logan N C, Yang S M, and Park J K 2021 Nucl. Fusion 61 056009
[36] Moret J M, Franke S, Weisen H, Anton M, Behn R, Duval B P, Hofmann F, Joye B, Martin Y, Nieswand C, Pietrzyk Z A, and van Toledo W 1997 Phys. Rev. Lett. 79 2057
[37] Fontana M, Porte L, Coda S, and Sauter O 2018 Nucl. Fusion 58 024002
[38] Wang H Y, Liu T, Liu Y Q, and Wang Z X 2022 Plasma Phys. Control. Fusion 64 085005
[39] Park W, Belova E V, Fu G Y, Tang X Z, Strauss H R, and Sugiyama L E 1999 Phys. Plasmas 6 1796
[40] Fu G Y, Park W, Strauss H R, Breslau J, Chen J, Jardin S, and Sugiyama L E 2006 Phys. Plasmas 13 052517
Related articles from Frontiers Journals
[1] Longwen Yan, Jinming Gao, Xianggan Miao, Zhihui Huang, Na Wu, Wenjin Chen, Ting Wu, Weice Wang, Liang Liu, Xiaoxue He, Kaiyang Yi, Yu He, Lin Nie, Zhongbing Shi, and Wulv Zhong. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak[J]. Chin. Phys. Lett., 2022, 39(11): 075201
[2] Chang Jiang, Chao Dong, and Ding Li. Transverse Rutherford Scattering of Electron-Ion Collision in a Uniformly Magnetized Plasma[J]. Chin. Phys. Lett., 2022, 39(2): 075201
[3] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 075201
[4] Feng Wang , Rui Zhao , Zheng-Xiong Wang, Yue Zhang , Zhan-Hong Lin , Shi-Jie Liu , and CFETR Team. PTC: Full and Drift Particle Orbit Tracing Code for $\alpha$ Particles in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 075201
[5] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 075201
[6] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 075201
[7] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 075201
[8] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 075201
[9] Yan-Bin Wu, Tian-Yang Xia, Fang-Chuan Zhong, Bin Gui, EAST Team. Impact of Sheath Boundary Conditions and Magnetic Flutter on Evolution and Distribution of Transient Particle and Heat Fluxes in the Edge-Localized Mode Burst by Experimental Advanced Superconducting Tokamak Simulation[J]. Chin. Phys. Lett., 2019, 36(4): 075201
[10] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 075201
[11] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 075201
[12] Jing-Bo Lin, Wen-Lu Zhang, Peng-Fei Liu, Chao Dong, Jin-Tao Cao, Ding Li. Particle Trajectory Integrator in Guiding Center Phase Space[J]. Chin. Phys. Lett., 2018, 35(2): 075201
[13] Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma[J]. Chin. Phys. Lett., 2017, 34(12): 075201
[14] Bo Shi, Zhen-Dong Yang, Bin Zhang, Cheng Yang, Kai-Fu Gan, Mei-Wen Chen, Jin-Hong Yang, Hui Zhang, Jun-Li Qi, Xian-Zu Gong, Xiao-Dong Zhang, Wei-Hua Wang. Heat Flux on EAST Divertor Plate in H-mode with LHCD/LHCD+NBI[J]. Chin. Phys. Lett., 2017, 34(9): 075201
[15] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 075201
Viewed
Full text


Abstract