Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 076201    DOI: 10.1088/0256-307X/40/7/076201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Regulation of Ionic Bond in Group IIB Transition Metal Iodides
Zhenzhen Xu1, Jianfu Li1*, Yanlei Geng1, Zhaobin Zhang1, Yang Lv1, Chao Zhang1, Qinglin Wang2, and Xiaoli Wang1*
1School of Physics and Electronic Information, Yantai University, Yantai 264005, China
2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science & Information Technology, Liaocheng University, Liaocheng 252059, China
Cite this article:   
Zhenzhen Xu, Jianfu Li, Yanlei Geng et al  2023 Chin. Phys. Lett. 40 076201
Download: PDF(1527KB)   PDF(mobile)(1665KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a swarm intelligence structure search method combining with first-principles calculations, three new structures of Zn–I and Hg–I compounds are discovered and pressure-composition phase diagrams are determined. An interesting phenomenon is found, that is, the compounds that are stable at 0 GPa in both systems will decompose into their constituent elements under certain pressure, which is contrary to the general intuition that pressure always makes materials more stability and density. A detailed analysis of the decomposition mechanism reveals the increase of formation enthalpy with the increase of pressure due to contributions from both $\Delta U$ and $\Delta [PV]$. Pressure-dependent studies of the $\Delta V$ demonstrate that denser materials tend to be stabilized at higher pressures. Additionally, charge transfer calculations show that external pressure is more effective in regulating the ionic bond of Hg–I, resulting in a lower decomposition pressure for HgI$_{2}$ than for ZnI$_{2}$. These findings have important implications for designs and syntheses of new materials, as they challenge the conventional understanding on how pressure affects stability.
Received: 20 April 2023      Published: 26 June 2023
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/076201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/076201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenzhen Xu
Jianfu Li
Yanlei Geng
Zhaobin Zhang
Yang Lv
Chao Zhang
Qinglin Wang
and Xiaoli Wang
[1] Zhu L, Liu H, Pickard C J, Zou G, and Ma Y 2014 Nat. Chem. 6 644
[2] Miao M S, Wang X L, Brgoch J, Spera F, Jackson M G, Kresse G, and Lin H Q 2015 J. Am. Chem. Soc. 137 14122
[3] Feng J, Hennig R G, Ashcroft N W, and Hoffmann R 2008 Nature 451 445
[4] Yang G C, Wang Y C, Peng F, Bergara A, and Ma Y M 2016 J. Am. Chem. Soc. 138 4046
[5] Bi H X, Zhang S T, Wei S B, Wang J Y, Zhou D, Li Q, and Ma Y M 2016 Phys. Chem. Chem. Phys. 18 4437
[6] Binns J, Dalladay-Simpson P, Wang M, Gregoryanz E, and Howie R T 2018 J. Phys. Chem. Lett. 9 3149
[7] Li J F, Geng Y L, Xu Z Z, Zhang P H, Garbarino G, Miao M S, Hu Q Y, and Wang X L 2023 JACS Au 3 402
[8] Arun P 2005 J. Mater. Sci. 40 4141
[9] Fourcroy P H, Carré D, and Rivet J 1978 Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 34 3160
[10] Okamoto H 2000 J. Phase Equilib. 21 314
[11] Hilpert K, Bencivenni L, and Saha B 1985 J. Chem. Phys. 83 5227
[12] Tyagi P and Vedeshwar A G 2002 Phys. Status Solidi A 191 633
[13] Tyagi P and Vedeshwar A G 2001 Phys. Rev. B 64 245406
[14] Vedeshwar A G and Tyagi P 2006 J. Appl. Phys. 100 083522
[15] Tyagi P, Mishra R K, Mehra N C, and Vedeshwar A G 2010 Integr. Ferroelectr. 122 52
[16] Xu Z Z, Rui Q, Geng Y L, Li J F, Wang Q L, and Wang X L 2022 Europhys. Lett. 140 16003
[17] Tubbs M R 1972 Phys. Status Solidi B 49 11
[18] Coehoorn R, Sawatzky G A, Haas C, and De Groot R A 1985 Phys. Rev. B 31 6739
[19] Robertson J 1979 J. Phys. C 12 4753
[20] Liu Q J, Liu Z T, and Feng L P 2011 Phys. Status Solidi B 248 1629
[21] Popovitz-Biro R, Sallacan N, and Tenne R 2003 J. Mater. Chem. 13 1631
[22] Kondo S, Matsuoka S, and Saito T 1998 Phys. Status Solidi A 165 271
[23] Liu X C, Guo X L, Niu Y Y, Wang Q L, Cui Q, Hou H W, Lv X R, and Ng S 2009 J. Chem. Crystallogr. 39 147
[24] Yan Z P, Yin K T, Yu Z H, Li X, Li M T, Yuan Y, Li X D, Yang K, Wang X L, and Wang L 2020 Appl. Mater. Today 18 100532
[25] Piechotka M 1997 Mater. Sci. Eng. R 18 1
[26] Zha M, Piechotka M, and Kaldis E 1991 J. Cryst. Growth 115 43
[27] Li W T, Li Z H, Zhu S F, Yin S J, Zhao B J, and Chen G X 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 370 435
[28] Mikler H 1972 Monatsh. Chem. - Chem. Mon. 103 110
[29] Hostettler M and Schwarzenbach D 2005 C. R. Chim. 8 147
[30] Gumiński C 1997 J. Phase Equilib. 18 206
[31] Wang Y C, Lv J, Zhu L, and Ma Y M 2010 Phys. Rev. B 82 094116
[32] Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[33] Wang H, Tse J S, Tanaka K, Iitaka T, and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[34] Zhang Y M, Lin S Y, Zou M, Liu M, Xu M L, Shen P F, Hao J, and Li Y W 2021 Chin. Phys. Lett. 38 018101
[35] Fan C M, Liu S, Liu J Y, Wu B B, Tang Q Q, Tao Y, Pu M F, Zhang F, Li J F, Wang X L, He D W, Zhou C Y, and Lei L 2022 Chin. Phys. Lett. 39 026401
[36] Lin J N, Wang F X, Rui Q, Li J F, Wang Q L, and Wang X L 2022 Matter Radiat. Extremes 7 038401
[37] Liu Y X, Wang C, Han S, Chen X, Sun H R, and Liu X B 2021 Chin. Phys. Lett. 38 036201
[38] Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102
[39] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[43] Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[44] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[45] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617
[46] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[47] Jeffrey G A and Vlasse M 1967 Inorg. Chem. 6 396
[48] Huggins M L and Magill P L 1927 J. Am. Chem. Soc. 49 2357
[49] Yunakova O N, Miloslavsky V K, and Kovalenko E N 2002 Low Temp. Phys. 28 284
[50] Schulte O and Holzapfel W B 1996 Phys. Rev. B 53 569
[51] Li J F, Guo S T, Zhu Z Q, Lin J N, Lv H Y, Pan H Z, Zhu H Y, and Wang X L 2019 Europhys. Lett. 126 36001
[52] Atoji M, Schirber J E, and Swenson C A 1959 J. Chem. Phys. 31 1628
[53] Schulte O and Holzapfel W B 1988 Phys. Lett. A 131 38
[54] Takemura K, Fujihisa H, Nakamoto Y, Nakano S, and Ohishi Y 2007 J. Phys. Soc. Jpn. 76 023601
[55] Schulte O and Holzapfel W B 1993 Phys. Rev. B 48 14009
[56] Kume T, Hiraoka T, Ohya Y, Sasaki S, and Shimizu H 2005 Phys. Rev. Lett. 94 065506
Related articles from Frontiers Journals
[1] Huijing Mu, Jin Si, Qingui Yang, Ying Xiang, Haipeng Yang, and Hai-Hu Wen. Temperature-Dependent Anisotropy and Two-Band Superconductivity Revealed by Lower Critical Field in Organic Superconductor $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br[J]. Chin. Phys. Lett., 2023, 40(6): 076201
[2] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 076201
[3] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 076201
[4] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 076201
[5] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 076201
[6] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 076201
[7] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 076201
[8] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 076201
[9] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 076201
[10] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 076201
[11] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 076201
[12] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 076201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 076201
[14] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 076201
[15] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 076201
Viewed
Full text


Abstract