CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Regulation of Ionic Bond in Group IIB Transition Metal Iodides |
Zhenzhen Xu1, Jianfu Li1*, Yanlei Geng1, Zhaobin Zhang1, Yang Lv1, Chao Zhang1, Qinglin Wang2, and Xiaoli Wang1* |
1School of Physics and Electronic Information, Yantai University, Yantai 264005, China 2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science & Information Technology, Liaocheng University, Liaocheng 252059, China
|
|
Cite this article: |
Zhenzhen Xu, Jianfu Li, Yanlei Geng et al 2023 Chin. Phys. Lett. 40 076201 |
|
|
Abstract Using a swarm intelligence structure search method combining with first-principles calculations, three new structures of Zn–I and Hg–I compounds are discovered and pressure-composition phase diagrams are determined. An interesting phenomenon is found, that is, the compounds that are stable at 0 GPa in both systems will decompose into their constituent elements under certain pressure, which is contrary to the general intuition that pressure always makes materials more stability and density. A detailed analysis of the decomposition mechanism reveals the increase of formation enthalpy with the increase of pressure due to contributions from both $\Delta U$ and $\Delta [PV]$. Pressure-dependent studies of the $\Delta V$ demonstrate that denser materials tend to be stabilized at higher pressures. Additionally, charge transfer calculations show that external pressure is more effective in regulating the ionic bond of Hg–I, resulting in a lower decomposition pressure for HgI$_{2}$ than for ZnI$_{2}$. These findings have important implications for designs and syntheses of new materials, as they challenge the conventional understanding on how pressure affects stability.
|
|
Received: 20 April 2023
Published: 26 June 2023
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
82.40.Fp
|
(Shock wave initiated reactions, high-pressure chemistry)
|
|
|
|
|
[1] | Zhu L, Liu H, Pickard C J, Zou G, and Ma Y 2014 Nat. Chem. 6 644 |
[2] | Miao M S, Wang X L, Brgoch J, Spera F, Jackson M G, Kresse G, and Lin H Q 2015 J. Am. Chem. Soc. 137 14122 |
[3] | Feng J, Hennig R G, Ashcroft N W, and Hoffmann R 2008 Nature 451 445 |
[4] | Yang G C, Wang Y C, Peng F, Bergara A, and Ma Y M 2016 J. Am. Chem. Soc. 138 4046 |
[5] | Bi H X, Zhang S T, Wei S B, Wang J Y, Zhou D, Li Q, and Ma Y M 2016 Phys. Chem. Chem. Phys. 18 4437 |
[6] | Binns J, Dalladay-Simpson P, Wang M, Gregoryanz E, and Howie R T 2018 J. Phys. Chem. Lett. 9 3149 |
[7] | Li J F, Geng Y L, Xu Z Z, Zhang P H, Garbarino G, Miao M S, Hu Q Y, and Wang X L 2023 JACS Au 3 402 |
[8] | Arun P 2005 J. Mater. Sci. 40 4141 |
[9] | Fourcroy P H, Carré D, and Rivet J 1978 Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 34 3160 |
[10] | Okamoto H 2000 J. Phase Equilib. 21 314 |
[11] | Hilpert K, Bencivenni L, and Saha B 1985 J. Chem. Phys. 83 5227 |
[12] | Tyagi P and Vedeshwar A G 2002 Phys. Status Solidi A 191 633 |
[13] | Tyagi P and Vedeshwar A G 2001 Phys. Rev. B 64 245406 |
[14] | Vedeshwar A G and Tyagi P 2006 J. Appl. Phys. 100 083522 |
[15] | Tyagi P, Mishra R K, Mehra N C, and Vedeshwar A G 2010 Integr. Ferroelectr. 122 52 |
[16] | Xu Z Z, Rui Q, Geng Y L, Li J F, Wang Q L, and Wang X L 2022 Europhys. Lett. 140 16003 |
[17] | Tubbs M R 1972 Phys. Status Solidi B 49 11 |
[18] | Coehoorn R, Sawatzky G A, Haas C, and De Groot R A 1985 Phys. Rev. B 31 6739 |
[19] | Robertson J 1979 J. Phys. C 12 4753 |
[20] | Liu Q J, Liu Z T, and Feng L P 2011 Phys. Status Solidi B 248 1629 |
[21] | Popovitz-Biro R, Sallacan N, and Tenne R 2003 J. Mater. Chem. 13 1631 |
[22] | Kondo S, Matsuoka S, and Saito T 1998 Phys. Status Solidi A 165 271 |
[23] | Liu X C, Guo X L, Niu Y Y, Wang Q L, Cui Q, Hou H W, Lv X R, and Ng S 2009 J. Chem. Crystallogr. 39 147 |
[24] | Yan Z P, Yin K T, Yu Z H, Li X, Li M T, Yuan Y, Li X D, Yang K, Wang X L, and Wang L 2020 Appl. Mater. Today 18 100532 |
[25] | Piechotka M 1997 Mater. Sci. Eng. R 18 1 |
[26] | Zha M, Piechotka M, and Kaldis E 1991 J. Cryst. Growth 115 43 |
[27] | Li W T, Li Z H, Zhu S F, Yin S J, Zhao B J, and Chen G X 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 370 435 |
[28] | Mikler H 1972 Monatsh. Chem. - Chem. Mon. 103 110 |
[29] | Hostettler M and Schwarzenbach D 2005 C. R. Chim. 8 147 |
[30] | Gumiński C 1997 J. Phase Equilib. 18 206 |
[31] | Wang Y C, Lv J, Zhu L, and Ma Y M 2010 Phys. Rev. B 82 094116 |
[32] | Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063 |
[33] | Wang H, Tse J S, Tanaka K, Iitaka T, and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463 |
[34] | Zhang Y M, Lin S Y, Zou M, Liu M, Xu M L, Shen P F, Hao J, and Li Y W 2021 Chin. Phys. Lett. 38 018101 |
[35] | Fan C M, Liu S, Liu J Y, Wu B B, Tang Q Q, Tao Y, Pu M F, Zhang F, Li J F, Wang X L, He D W, Zhou C Y, and Lei L 2022 Chin. Phys. Lett. 39 026401 |
[36] | Lin J N, Wang F X, Rui Q, Li J F, Wang Q L, and Wang X L 2022 Matter Radiat. Extremes 7 038401 |
[37] | Liu Y X, Wang C, Han S, Chen X, Sun H R, and Liu X B 2021 Chin. Phys. Lett. 38 036201 |
[38] | Liu L L, Zhang S T, and Zhang H J 2022 Chin. Phys. Lett. 39 056102 |
[39] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[40] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[41] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[42] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[43] | Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 |
[44] | Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461 |
[45] | Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617 |
[46] | Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 |
[47] | Jeffrey G A and Vlasse M 1967 Inorg. Chem. 6 396 |
[48] | Huggins M L and Magill P L 1927 J. Am. Chem. Soc. 49 2357 |
[49] | Yunakova O N, Miloslavsky V K, and Kovalenko E N 2002 Low Temp. Phys. 28 284 |
[50] | Schulte O and Holzapfel W B 1996 Phys. Rev. B 53 569 |
[51] | Li J F, Guo S T, Zhu Z Q, Lin J N, Lv H Y, Pan H Z, Zhu H Y, and Wang X L 2019 Europhys. Lett. 126 36001 |
[52] | Atoji M, Schirber J E, and Swenson C A 1959 J. Chem. Phys. 31 1628 |
[53] | Schulte O and Holzapfel W B 1988 Phys. Lett. A 131 38 |
[54] | Takemura K, Fujihisa H, Nakamoto Y, Nakano S, and Ohishi Y 2007 J. Phys. Soc. Jpn. 76 023601 |
[55] | Schulte O and Holzapfel W B 1993 Phys. Rev. B 48 14009 |
[56] | Kume T, Hiraoka T, Ohya Y, Sasaki S, and Shimizu H 2005 Phys. Rev. Lett. 94 065506 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|