Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 066701    DOI: 10.1088/0256-307X/40/6/066701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Hydrodynamics of a Multi-Component Bosonic Superfluid
Fan Zhang and Lan Yin*
School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Fan Zhang and Lan Yin 2023 Chin. Phys. Lett. 40 066701
Download: PDF(407KB)   PDF(mobile)(430KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We obtain the superfluid hydrodynamic equations of a multi-component Bose gas with short-ranged interactions at zero temperature under the local equilibrium assumption and show that the quantum pressure is generally present in the nonuniform case. Our approach can be extended to systems with long-range interactions such as dipole-dipole interactions by treating the Hartree energy properly. For a highly symmetric superfluid, we obtain the excitation spectrum and show that except for the density phonon, all other excitations are all degenerate. The implication of our results is discussed.
Received: 18 March 2023      Editors' Suggestion Published: 16 May 2023
PACS:  05.30.Jp (Boson systems)  
  47.37.+q (Hydrodynamic aspects of superfluidity; quantum fluids)  
  67.85.Pq (Mixtures of Bose and Fermi gases)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/066701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/066701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fan Zhang and Lan Yin
[1] Kapitza P 1938 Nature 141 74
[2] Tisza L 1938 Nature 141 913
[3] Landau L 1941 Phys. Rev. 60 356
[4]Landau L D and Lifshitz E M 1959 Fluid Mechanics 2nd edn (Oxford: Butterworth–Heinemann)
[5] Coste C 1998 Eur. Phys. J. B 1 245
[6] Taylor E and Griffin A 2005 Phys. Rev. A 72 053630
[7] Pastukhov V 2017 Phys. Rev. A 95 023614
[8] Hoyos C, Kim B S, and Oz Y 2013 J. High Energy Phys. 2013(11) 145
[9]Schmitt A 2014 Introduction to Superfluidity—Field-Theoretical Approach and Applications. Lecture Notes in Physics Vol 888
[10]Svistunov B V, Babaev E S, and Prokof'ev N V 2015 Superfluid States of Matter (New York: CRC Press)
[11] Gross E P 1961 Il Nuovo Cimento 20 454
[12]Pitaevskii L P 1961 Sov. Phys.-JETP 13 451
[13] Stringari S 1996 Phys. Rev. Lett. 77 2360
[14]Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[15]Leggett A J 2006 Quantum Liquids Bose condensation and Cooper Pairing in Condensed-Matter Systems (Oxford: Oxford University Press)
[16]Pitaevskii L and Stringari S 2016 Bose-Einstein Condensation and Superfluidity (Oxford: Oxford University Press)
[17] Wu W C and Griffin A 1996 Phys. Rev. A 54 4204
[18] Marques G C and Bagnato V S 2000 Phys. Rev. A 61 053607
[19] Marques G C, Bagnato V S, and Spehler D 2001 Phys. Rev. A 63 43607
[20] Nikuni T, Zaremba E, and Griffin A 1999 Phys. Rev. Lett. 83 10
[21] Nikuni T and Griffin A 2001 Phys. Rev. A 63 033608
[22] Griffin A, Nikuni T, and Zaremba E 2009 Bose-Condensed Gases at Finite Temperatures (Cambridge: Cambridge University Press)
[23] Boudjemâa A 2013 Phys. Rev. A 88 23619
[24] Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
[25]Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (Singerpore: World Scientific)
[26] Ilinski K N and Stepanenko A S 1998 arXiv:cond-mat/9803233 [cond-mat.stat-mech]
[27] Minguzzi A, Chiofalo M L, and Tosi M P 1997 Phys. Lett. A 236 237
[28] Abad M, Recati A, Stringari S, and Chevy F 2015 Eur. Phys. J. D 69 126
[29] Andreev P A and Kuzmenkov L S 2008 Phys. Rev. A 78 053624
[30] Andreev P A 2021 Laser Phys. Lett. 18 055501
[31] Andreev P A, Mosaki I, and Trukhanova M I 2021 Phys. Fluids 33 067108
[32]Popov V N 1987 Functional Integrals and Collective Excitations (Cambridge: Cambridge University Press)
[33] Al K U, Andersen J O, Proukakis N P, and Stoof H T C 2002 Phys. Rev. A 66 013615
[34] Leggett A J 1970 Phys. Rev. Lett. 25 1543
[35] Leggett A J 1998 J. Stat. Phys. 93 927
[36] Chauveau G, Maury C, Rabec F, Heintze C, Brochier G, Nascimbene S, Dalibard J, Beugnon J, Roccuzzo S, and Stringari S 2023 arXiv:2302.01776 [cond-mat.quant-gas]
[37] Bohm D 1952 Phys. Rev. 85 166
[38]Andreev A and Bashkin E 1975 Sov. J. Exp. Theor. Phys. 42 164
[39]Khalatnikov I 1957 Sov. Phys.-JETP 5 542
[40] Fil D and Shevchenko S 2005 Phys. Rev. A 72 013616
[41] Nespolo J, Astrakharchik G E, and Recati A 2017 New J. Phys. 19 125005
[42] Romito D, Lobo C, and Recati A 2021 Phys. Rev. Res. 3 023196
[43]Fetter A L and Walecka J D 2012 Quantum Theory of Many-Particle Systems (Courier Corporation)
[44] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[45] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, and Tarruell L 2018 Science 359 301
[46] Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[47] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M, and Fattori M 2018 Phys. Rev. Lett. 120 235301
[48] D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F, and Fort C 2019 Phys. Rev. Res. 1 033155
[49] Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, and Pfau T 2016 Nature 530 194
[50] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, and Pfau T 2016 Phys. Rev. Lett. 116 215301
[51] Ferrier-Barbut I, Schmitt M, Wenzel M, Kadau H, and Pfau T 2016 J. Phys. B 49 214004
[52] Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I, and Pfau T 2016 Nature 539 259
[53] Wenzel M, Böttcher F, Tim L, Ferrier-Barbut I, and Pfau T 2017 Phys. Rev. A 96 053630
[54] Chomaz L, Baier S, Petter D, Mark M J, Wächtler F, Santos L, and Ferlaino F 2016 Phys. Rev. X 6 041039
[55] Petrov D S 2015 Phys. Rev. Lett. 115 155302
[56] Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302
[57] Wang Y Q, Guo L F, Yi S, and Shi T 2020 Phys. Rev. Res. 2 043074
[58] Gu Q and Yin L 2020 Phys. Rev. B 102 220503
[59] Xiong Y C and Yin L 2022 Phys. Rev. A 105 053305
[60] He L, Li H, Yi W, and Yu Z Q 2022 arXiv:2209.13559 [cond-mat.quant-gas]
[61] Wächtler F and Santos L 2016 Phys. Rev. A 93 061603
[62] Saito H 2016 J. Phys. Soc. Jpn. 85 053001
[63] Bisset R N, Wilson R M, Baillie D, and Blakie P B 2016 Phys. Rev. A 94 033619
[64] Baillie D and Blakie P B 2018 Phys. Rev. Lett. 121 195301
[65] Zhang F and Yin L 2022 Chin. Phys. Lett. 39 060301
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 066701
[2] Yuncheng Xiong  and Lan Yin. Self-Bound Quantum Droplet with Internal Stripe Structure in One-Dimensional Spin-Orbit-Coupled Bose Gas[J]. Chin. Phys. Lett., 2021, 38(7): 066701
[3] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 066701
[4] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 066701
[5] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 066701
[6] OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua, SONG Ke-Hui. Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation[J]. Chin. Phys. Lett., 2013, 30(8): 066701
[7] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 066701
[8] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 066701
[9] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 066701
[10] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 066701
[11] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 066701
[12] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 066701
[13] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 066701
[14] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 066701
[15] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 066701
Viewed
Full text


Abstract