CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Magnetic-Field-Induced Sign Changes of Thermal Expansion in DyCrO$_{4}$ |
Jin-Cheng He1,2†, Zhao Pan1,2†, Dan Su1,2, Xu-Dong Shen1,2, Jie Zhang1,2, Da-Biao Lu1,2, Hao-Ting Zhao1,2, Jun-Zhuang Cong1, En-Ke Liu1,2, You-Wen Long1,2,3*, and Young Sun1,4* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Center of Quantum Materials and Devices, and Department of Applied Physics, Chongqing University, Chongqing 401331, China
|
|
Cite this article: |
Jin-Cheng He, Zhao Pan, Dan Su et al 2023 Chin. Phys. Lett. 40 066501 |
|
|
Abstract The anharmonicity of lattice vibration is mainly responsible for the coefficient of thermal expansion (CTE) of materials. External stimuli, such as magnetic and electric fields, thus cannot effectively change the CTE, much less the sign variation from positive to negative or vice versa. In this study, we report significant magnetic field effects on the CTE of zircon- and scheelite-type DyCrO$_{4}$ prepared at ambient and high pressures, respectively. At zero field, the zircon-type DyCrO$_{4}$ exhibits a negative CTE below the ferromagnetic-order temperature of 23 K. With increasing field up to $\ge $1.0 T, however, the sign of the CTE changes from negative to positive. In the scheelite phase, magnetic field can change the initially positive CTE to be negative with a field up to 2.0 T, and then a reentrant positive CTE is induced by enhanced fields $\ge $3.5 T. Both zircon and scheelite phases exhibit considerable magnetostrictive effects with the absolute values as high as $\sim$ $800$ ppm at 2 K and 10 T. The strong spin–lattice coupling is discussed to understand the unprecedented sign changes of the CTE caused by applying magnetic fields. The current DyCrO$_{4}$ provides the first example of field-induced sign change of thermal expansion, opening up a way to readily control the thermal expansion beyond the conventional chemical substitution.
|
|
Received: 11 April 2023
Express Letter
Published: 25 May 2023
|
|
PACS: |
65.40.Gr
|
|
|
81.30.Kf
|
(Martensitic transformations)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
|
|
|
[1] | Chen J, Hu L, Deng J, and Xing X 2015 Chem. Soc. Rev. 44 3522 |
[2] | Takenaka K 2012 Sci. Technol. Adv. Mater. 13 13001 |
[3] | Venkataraman G, Feldkamp L A, and Sahni V C 1975 Dynamics of Perfect Crystals (Cambridge: MIT Press) |
[4] | Chen J et al. 2013 Sci. Rep. 3 2458 |
[5] | Mary T A, Evans J S O, Vogt T, and Sleight A W 1996 Science 272 90 |
[6] | Greve B K et al. 2010 J. Am. Chem. Soc. 132 15496 |
[7] | Goodwin A L et al. 2008 Science 319 794 |
[8] | Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902 |
[9] | van Schilfgaarde M, Abrikosov I A, and Johansson B 1999 Nature 400 46 |
[10] | Yu C Y et al. 2021 Nat. Commun. 12 4701 |
[11] | Takenaka K, Okamoto Y, Shinoda T, Katayama N, and Sakai Y 2017 Nat. Commun. 8 14102 |
[12] | Long Y W et al. 2009 Nature 458 60 |
[13] | Azuma M et al. 2011 Nat. Commun. 2 347 |
[14] | Asai D et al. 2019 Appl. Phys. Lett. 114 141902 |
[15] | Chen J et al. 2011 J. Am. Chem. Soc. 133 11114 |
[16] | Pan Z et al. 2017 J. Am. Chem. Soc. 139 14865 |
[17] | Ren Z H et al. 2018 Nat. Commun. 9 1638 |
[18] | Kou R H et al. 2016 J. Mater. Sci. 51 1896 |
[19] | Song Y Z et al. 2020 Chem. Mater. 32 7535 |
[20] | Long Y W et al. 2008 J. Appl. Phys. 103 93542 |
[21] | Midya A, Khan N, Bhoi D, and Mandal P 2013 Appl. Phys. Lett. 103 92402 |
[22] | Long Y W et al. 2010 J. Magn. Magn. Mater. 322 1912 |
[23] | Smirnov M B, Mirgorodsky A P, Kazimirov V Y, and Guinebretière R 2008 Phys. Rev. B 78 94109 |
[24] | Gehring G A and Gehring K A 1975 Rep. Prog. Phys. 38 1 |
[25] | Long Y W, Liu Q Q, Lv Y X, Yu R C, and Jin C Q 2011 Phys. Rev. B 83 024416 |
[26] | Shen X D et al. 2019 NPG Asia Mater. 11 50 |
[27] | Kobayashi M and Mochizuki M 2019 Phys. Rev. Mater. 3 024407 |
[28] | Xing Q, Du Y, Mcqueeney R J, and Lograsso T A 2008 Acta Mater. 56 4536 |
[29] | Ibarra M R and Moral A D 1990 J. Magn. Magn. Mater. 83 121 |
[30] | Sierks C et al. 1999 J. Magn. Magn. Mater. 192 473 |
[31] | Cullen J R and Clark A E 1977 Phys. Rev. B 15 4510 |
[32] | Buisson G, Tchéou F, Sayetat F, and Scheunemann K 1976 Solid State Commun. 18 871 |
[33] | Alberts L and Lee E W 1961 Proc. Phys. Soc. 78 728 |
[34] | He A N, Ma T Y, Zhang J J, Luo W, and Yan M 2009 J. Magn. Magn. Mater. 321 3778 |
[35] | Peng W Y and Zhang J H 2006 Appl. Phys. Lett. 89 262501 |
[36] | Long Y W 2007 Phys. Rev. B 75 104402 |
[37] | Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 |
[38] | Ma Y N, Wang Y X, Cong J C, and Sun Y 2019 Phys. Rev. Lett. 122 255701 |
[39] | Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V, and Sun Y 2021 Phys. Rev. B 103 174433 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|