Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 054202    DOI: 10.1088/0256-307X/40/5/054202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Moiré Metasurface with Triple-Band Near-Perfect Chirality
Bokun Lyu, Haojie Li, Qianwen Jia, Guoxia Yang, Fengzhao Cao, Dahe Liu, and Jinwei Shi*
Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
Cite this article:   
Bokun Lyu, Haojie Li, Qianwen Jia et al  2023 Chin. Phys. Lett. 40 054202
Download: PDF(11756KB)   PDF(mobile)(12291KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chiral metasurfaces have been proven to possess great potential in chiroptical applications. However, the multiband chiral metasurface with near-perfect circular dichroism has not been well studied. Also, the widely used bilayer metasurface usually suffers from the interlayer alignment and weak resonance. Here, we propose a twisted Moiré metasurface which can support three chiral bands with near-unity circular dichroism. The Moiré metasurface can remove the restriction of interlayer alignment, while maintaining a strong monolayer resonance. The two chiral bands in the forward direction can be described by two coupled-oscillator models. The third chiral band is achieved by tuning the interlayer chiral mode on resonance with the intralayer mode, to eliminate the parallel and converted components simultaneously. Finally, we study the robustness and tunability of the triple-layer Moiré metasurface in momentum space. This work provides a universal method to achieve three near-unity circular dichroism bands in one metasurface, which can promote applications of chiral metasurfaces in multiband optical communication, chiral drug separation, sensing, optical encryption, chiral laser, nonlinear and quantum optics, etc.
Received: 09 February 2023      Published: 01 May 2023
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  11.30.Rd (Chiral symmetries)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/054202       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/054202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bokun Lyu
Haojie Li
Qianwen Jia
Guoxia Yang
Fengzhao Cao
Dahe Liu
and Jinwei Shi
[1] Patterson D, Schnell M, and Doyle J M 2013 Nature 497 475
[2] Wu Z L, Chen X, Wang M, Dong J, and Zheng Y 2018 ACS Nano 12 5030
[3] Zhao Y, Askarpour A N, Sun L, Shi J, Li X, and Alù A 2017 Nat. Commun. 8 14180
[4]Nguyen L A, He H, and Pham-Huy C 2006 Int. J. Biomed. Sci.: IJBS 2 85
[5] Qu D, Zheng H, Jiang H, Xu Y, and Tang Z 2019 Adv. Opt. Mater. 7 1801395
[6] Wu X H, Fu C J, and Zhang Z M 2019 Opt. Commun. 452 124
[7]Wu X H, Fu C J, and Zhang Z M 2020 ES Energy & Environ. 8 5
[8] Li S, Sang T, Yang C, Pei Y, Mi Q, Wang Y K, Cao G Y, and Liu C 2022 Opt. Commun. 521 128557
[9] Jeong K J, Gwak J, Wang C, Kim Y M, Tran V T, and Lee J 2022 ACS Nano 16 6103
[10] Shen Z L, Fan S T, Yin W, Li S G, Xu Y F, Zhang L Y, and Chen X F 2022 Laser & Photon. Rev. 34 2200370
[11] Zhou J X, Wang Y K, Sang T, and Lu M J 2020 Laser Phys. Lett. 17 126201
[12] Ullah H, Abudukelimu A, Qu Y, Bai Y, Aba T, and Zhang Z 2020 Nanotechnology 31 275205
[13] Mamonov E A, Maydykovskiy A I, Kolmychek I A, Magnitskiy S A, and Murzina T V 2017 Phys. Rev. B 96 075408
[14] Li G X, Zhang S, and Zentgraf T 2017 Nat. Rev. Mater. 2 17010
[15] McDonnell C, Deng J, Sideris S, Ellenbogen T, and Li G 2021 Nat. Commun. 12 30
[16] Fan W J, Wang Y R, Zheng R Q, Liu D H, and Shi J W 2015 Opt. Express 23 19535
[17] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, and Wegener M 2009 Science 325 1513
[18] Liu Z G, Du H F, Li J F, Lu L, Li Z Y, and Fang N X 2018 Sci. Adv. 4 eaat4436
[19] Tang Y T, Liu Z Q, Deng J H, Li K F, Li J F, and Li G X 2020 Laser & Photon. Rev. 14 2000085
[20] Hou Z Y, Zheng C L, Li J, Zhang P Y, Li S Z, Zheng S P, Shen J, Yao J Q, and Li C Y 2022 Results Phys. 42 106024
[21] Li Y, Xu Y, Jiang M, Li B, Han T, Chi C, Lin F, Shen B, Zhu X, and Lai L 2019 Phys. Rev. Lett. 123 213902
[22] Wei Z Y, Zhao Y L, Zhang Y J, Cai W W, Fan Y C, Wang SZ, and Cheng X B 2022 Nanoscale Adv. 4 4344
[23] Zhang S, Park Y S, Li J, Lu X, Zhang W, and Zhang X 2009 Phys. Rev. Lett. 102 023901
[24] Zhang F, Pu M, Li X, Gao P, Ma X, Luo J, Yu H, and Luo X 2017 Adv. Funct. Mater. 27 1704295
[25] Ni J C, Liu S L, Hu G W, Hu Y L, Lao Z X, Li J W, Zhang Q, Wu D, Dong S H, and Chu J 2021 ACS Nano 15 2893
[26] Khaliq H S, Kim I, Zahid A, Kim J, Lee T, Badloe T, Kim Y, Zubair M, Riaz K, and Mehmood M Q 2021 Photon. Res. 9 1667
[27] Wang H, Zhou H, Li T, Qin Z, Li C, Li X, Li Y, Zhang J, Qu S, and Huang L 2022 Sci. Chin. Phys. Mech. & Astron. 65 104212
[28] Tang H T, Rosenmann D, Czaplewski D A, Yang X D, and Gao J 2022 Opt. Express 30 20063
[29] Tseng M L, Lin Z H, Kuo H Y, Huang T T, Huang Y T, Chung T L, Chu C H, Huang J S, and Tsai D P 2019 Adv. Opt. Mater. 7 1900617
[30] Yin X H, Schäferling M, Metzger B, and Giessen H 2013 Nano Lett. 13 6238
[31] Wang P, Zheng Y, Chen X, Huang C, Kartashov Y V, Torner L, Konotop V V, and Ye F 2020 Nature 577 42
[32] Fu Q D, Wang P, Huang C M, Kartashov Y V, Torner L, Konotop V V, and Ye F W 2020 Nat. Photon. 14 663
[33] Wang P, Fu Q, Peng R, Kartashov Y V, Torner L, Konotop V V, and Ye F 2022 Nat. Commun. 13 6738
[34] Fan Z Y and Govorov A O 2010 Nano Lett. 10 2580
[35] Zhao Y, Belkin M, and Alù A 2012 Nat. Commun. 3 870
[36] Zhao Y, Shi J, Sun L, Li X, and Alù A 2014 Adv. Mater. 26 1439
[37] Chen Y, Deng H C, Sha X B, Chen W J, Wang R Z, Chen Y H, Wu D, Chu J R, Kivshar Y S, Xiao S M, and Cheng W Q 2023 Nature 613 474
Related articles from Frontiers Journals
[1] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 054202
[2] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 054202
[3] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 054202
[4] Hang Heng, Rong Wang. Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities[J]. Chin. Phys. Lett., 2016, 33(08): 054202
[5] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 054202
[6] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 054202
[7] LI Chun-Lai, GUO Jie, ZHANG Peng, YU Quan-Qiang, MA Wei-Tao, MIAO Xi-Gen, ZHAO Zhi-Ya, LUAN Lin. Planar Magnetic Metamaterial Slabs for Magnetic Resonance Imaging Applications[J]. Chin. Phys. Lett., 2014, 31(07): 054202
[8] LIAO Zhong-Wei, HUANG Ying-Zhou, WANG Xiao-Yong, CHAU Irene Yeung-Yeung, WANG Shu-Xia, WEN Wei-Jia. Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings[J]. Chin. Phys. Lett., 2014, 31(06): 054202
[9] HENG Hang, YANG Li. Multi-Band Absorption Properties and Near-Field Enhancement in Mid-Infrared Based on the Interference Theory[J]. Chin. Phys. Lett., 2014, 31(05): 054202
[10] HENG Hang, YANG Li, YE Yong-Hong. Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range[J]. Chin. Phys. Lett., 2014, 31(1): 054202
[11] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 054202
[12] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 054202
Viewed
Full text


Abstract