FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Femtosecond Fiber Laser Based on BiSbTeSe$_{2}$ Quaternary Material Saturable Absorber |
Yue-Jia Xiao1, Xiao-Wei Xing1, Wen-Wen Cui1, Yue-Qian Chen1, Qin Zhou2, and Wen-Jun Liu1* |
1State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
|
|
Cite this article: |
Yue-Jia Xiao, Xiao-Wei Xing, Wen-Wen Cui et al 2023 Chin. Phys. Lett. 40 054201 |
|
|
Abstract Topological insulator materials, including Bi$_{2}$Te$_{3}$, Sb$_{2}$Te$_{3}$, Sb$_{2}$Te$_{3}$, and Bi$_{2}$Se$_{3}$, have attracted some attention due to their narrow band gaps, high carrier mobility, wide spectral absorption ranges and other characteristics. We report a new multi-compound topological insulator material BiSbTeSe$_{2}$ that, compared with the traditional topological insulator composed of two elements, can integrate the physical advantages of each element, helpful to build an experimental platform with rich physical properties. The nonlinear optical characteristics of the quaternary material BiSbTeSe$_{2}$ is obtained in the erbium-doped fiber laser. Using the BiSbTeSe$_{2}$ as a saturable absorber material, the passive Q-switched and mode-locked fiber lasers are achieved. The pulse duration and signal-to-noise ratio (SNR) of the Q-switched fiber laser are 854 ns and 70 dB, respectively. Meanwhile, the pulse duration and SNR of the mode-locked fiber laser are 259 fs and 87.75 dB, respectively. This work proves that the BiSbTeSe$_{2}$ has a considerable application prospect as a saturable absorber in fiber lasers, and provides a new reference for selection of high-performance saturable absorber materials.
|
|
Received: 13 February 2023
Published: 18 April 2023
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.70.Hj
|
(Laser materials)
|
|
42.70.-a
|
(Optical materials)
|
|
|
|
|
[1] | Liu Z J, Jin X X, Su R T, Ma P F, and Zhou P 2019 Sci. Chin. Inf. Sci. 62 41301 |
[2] | Maria H, Jasper P, Marius P, Hugo D, Kévin V, Eric C, Peter S, Hampus W, Sylvain M, Chen G, Cord A, Anne L H, and Johnsson E 2021 Ultrafast Sci. 2021 9797453 |
[3] | Gong Q H and Zhao W 2021 Ultrafast Sci. 2021 9765859 |
[4] | Huang Y D, Zhao J, Shu Z, Zhu Y L, Liu J L, Dong W P, Wang X W, Lv Z H, Zhang D W, Yuan J M, Chen J, and Zhao Z X 2021 Ultrafast Sci. 2021 9837107 |
[5] | Boolakee T, Heide C, Garzón-Ramírez A et al. 2022 Nature 605 251 |
[6] | Yuki K, Christian H, Koochaki K M, Amalya J, Liu F, Heinz T F, and David A 2021 Ultrafast Sci. 2021 9820716 |
[7] | Zervas M N and Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 0904123 |
[8] | Ahmad H, Hidayah M N, Aisyah R S, Muhamad Z S, Muhammad U M I, and Norazriena Y 2022 Opt. Fiber Technol. 73 103013 |
[9] | Ahmad H, Kahar N H A, Yusoff N, Hanafi A I M, Ramli R, Harun S W, and Reduan S A 2022 Opt. Laser Technol. 155 108397 |
[10] | Liu J T, Yang F, Lu J P, Ye S, Guo H W, Nie H K, Zhang J L, He J L, Zhang B T, and Ni Z H 2022 Nat. Commun. 13 3855 |
[11] | Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, and Wei Z Y 2017 Opt. Express 25 2950 |
[12] | Yuan M Y, Wang W Q, Wang X Y, Wang Y, Yang Q H, Cheng D, Liu Y, Huang L, Zhang M G, Liang B, Zhao W, and Zhang W F 2021 Opt. Lett. 46 4855 |
[13] | Leke P A and Dikandé A M 2020 Appl. Phys. B 126 157 |
[14] | Li L J, Zhou L, Li T X, Yang X N, Xie W Q, Duan X M, Shen Y J, Yang Y Q, Yang W L, and Zhang H 2020 Opt. Laser Technol. 124 105986 |
[15] | Liu W J, Pang L H, Han H N, Bi K, Lei M, and Wei Z Y 2017 Nanoscale 9 5806 |
[16] | Martín C J 2022 Opt. Commun. 525 128856 |
[17] | Zhao L, Xu N N, Shang X X, Liu X Y, Huang P, Lu H, Zhang H N, and Li D W 2022 Laser Phys. 32 095101 |
[18] | Yusoff N M, Abdul H M A W, Zainol A N H, Alresheedi M T, Goh C S, and Mahdi M A 2022 Optik 257 168730 |
[19] | Armas R I, Rodriguez M L A, Durán Sánchez M, Avazpour M, Carrascosa A, Silvestre E, Kuzin E A, Andrés M V, and Ibarra Escamilla B 2021 Opt. Laser Technol. 134 106593 |
[20] | Dai S G, Li X, Wu D D, and Nie Q H 2018 Optik 165 195 |
[21] | Mashiko Y, Fujita E, Tokurakawa M 2016 Opt. Express 24 26515 |
[22] | Afifi G, Khedr M A, Badr Y, Danailov M, Sigalotti P, Cinquegrana P, Alsou M B, and Galaly A R 2016 Opt. Fiber Technol. 29 74 |
[23] | Song R, Chen H W, Chen S P, Hou J, and Lu Q S 2011 J. Opt. 13 035201 |
[24] | Luo Z C, Luo A P, and Xu W C 2011 IEEE Photon. J. 3 64 |
[25] | Kaur N J and Soumendu J 2022 Chaos Solitons & Fractals 158 111983 |
[26] | Xiong Z D, Jiang L L, Cheng T T, and Jiang H H 2022 Infrared Phys. & Technol. 122 104087 |
[27] | Lau K Y, Zheng J C, Jin C, and Yang S 2022 Infrared Phys. & Technol. 122 104103 |
[28] | Baylam I, Cizmeciyan M N, Kakenov N, Kocabas C, and Sennaroglu A 2019 2D Mater. 6 035013 |
[29] | Lee H, Kwon W S, Kim J H, Kang D, and Kim S 2015 Opt. Express 23 22116 |
[30] | Markom A M, Tan S J, Muhammad A R, Paul M C, Dhar A, Das S, Latiff A A, and Harun S W 2020 Optik 223 165635 |
[31] | Pawliszewska M, Ge Y Q, Li Z J, Zhang H, and Sotor J 2017 Opt. Express 25 16916 |
[32] | Li L, Lv R D, Liu S C, Wang X, Wang Y G, Chen Z D, and Wang J 2018 Laser Phys. 28 055106 |
[33] | Ahmad H, Kahar N H A, Yusoff N, Samion M Z, Reduan S A, Ismail M F, Bayang L, Wang Y, Wang S Y, and Sahu J K 2022 Opt. Fiber Technol. 69 102851 |
[34] | Yang J N, Li Y H, Tian K, Liu F F, Dou X D, Ma Y J, Han W J, Xu H H, and Liu J H 2018 Laser Phys. Lett. 15 125802 |
[35] | Al-Masoodi A H H, Ahmad F, Ahmed M H M, Al-Masoodi A H H, Alani I A M, Arof H, and Harun S W 2018 IET Optoelectron. 12 180 |
[36] | Jiang G B, Zhou Y, Wang L L, and Chen Y 2018 Adv. Condens. Matter Phys. 2018 7578050 |
[37] | Zhang X, Wang J, and Zhang S C 2010 Phys. Rev. B 82 245107 |
[38] | Tian W C, Yu W B, Shi J, and Wang Y K 2017 Materials 10 814 |
[39] | Haris H, Muhammad A R, Tan S J, Markom A M, Harun S W, Megat H M M I, and Saad I 2022 Infrared Phys. & Technol. 123 104154 |
[40] | Fukui T and Hatsugai Y 2007 Phys. Rev. B 75 121403 |
[41] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 |
[42] | Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757 |
[43] | Ma X H, Chen W, Tong L, Liu S Q, Dai W W, Ye S S, Zheng Z Q, Wang Y Y, Zhou Y, Zhang W, Fang W T, Chen X L, Liao M S, and Gao W Q 2021 Opt. Laser Technol. 143 107286 |
[44] | Zhang L F, Liu J F, Li J Z, Wang Z, Wang Y G, Ge Y W, Dong W L, Xu N, He T C, Zhang H, and Zhang W J 2020 Laser & Photon. Rev. 14 1900409 |
[45] | Jiang Y J, Li S S, Zhu P, Zhao J G, Xiong X L, Wu Y T, Zhang X, Li Y K, Song T L, Xiao W D, Wang Z W, and Han J F 2022 ACS Appl. Bio Mater. 5 1084 |
[46] | Brevoord J M, Wielens D, Lankhorst M, Díez-Mérida J, Huang Y K, Li C, B, and Brinkman A 2021 Nanotechnology 32 435001 |
[47] | Kaveev A K, Suturin S M, Golyashov V A, Kokh K A, and Tereshchenko O E 2019 J. Phys.: Conf. Ser. 1400 055016 |
[48] | Knispel T, Jolie W, Borgwardt N, Lux J, Wang Z W, Ando Y, Rosch A, Michely T, and Grüninger M 2017 Phys. Rev. B 96 195135 |
[49] | Wang J M, Kurzendorfer A, Chen L, Wang Z W, Ando Y, Xu Y, Miotkowski I, Chen Y P, and Weiss D 2021 Appl. Phys. Lett. 118 253107 |
[50] | German R, Komleva E V, Stein P, Mazurenko V G, Wang Z W, Streltsov S V, Ando Y, and van Loosdrecht P H M 2019 Phys. Rev. Mater. 3 054204 |
[51] | Sotor J, Sobon G, Grodecki K, and Abramski K M 2014 Appl. Phys. Lett. 104 251112 |
[52] | Lee J, Koo J, Jhon Y M, and Lee J H 2014 Opt. Express 22 6165 |
[53] | Li K X, Song Y R, Yu Z H, Xu R Q, Dou Z Y, and Tian J R 2015 Laser Phys. Lett. 12 105103 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|