CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Competition between Stepwise Polarization Switching and Chirality Coupling in Ferroelectric GeS Nanotubes |
Hao-Chen Wang1,2, Zhi-Hao Wang2, Xuan-Yan Chen2, Su-Huai Wei2*, Wenguang Zhu1*, and Xie Zhang2* |
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2Beijing Computational Science Research Center, Beijing 100193, China
|
|
Cite this article: |
Hao-Chen Wang, Zhi-Hao Wang, Xuan-Yan Chen et al 2023 Chin. Phys. Lett. 40 047701 |
|
|
Abstract Ferroelectricity of group-IV chalcogenides $MX$ ($M$ = Ge, Sn; $X$ = Se, S) monolayers has been extensively investigated. However, how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear. Employing an accurate deep-learning interatomic potential of first-principles precision, we uncover a general stepwise mechanism for polarization switching in zigzag and chiral GeS nanotubes, which has an energy barrier that is substantially lower than the one associated with the conventional one-step switching mechanism. The switching barrier (per atom) gradually decreases with increasing the number of intermediate steps and converges to a value that is almost independent of the tube diameter. In the chiral GeS nanotubes, the switching path of polarization with chirality coupling is preferred at less intermediate steps. This study unveils novel ferroelectric switching behaviors in one-dimensional nanotubes, which is critical to coupling ferroelectricity and chirality.
|
|
Received: 23 February 2023
Editors' Suggestion
Published: 04 April 2023
|
|
|
|
|
|
[1] | Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, and Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955 |
[2] | Bhide V G, Deshmukh K G, Hegde M S 1962 Physica 28 871 |
[3] | Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti J G A, and Rödel J 2017 Appl. Phys. Rev. 4 041305 |
[4] | Gao J H, Xue D Z, Liu W F, Zhou C, and Ren X B 2017 Actuators 6 24 |
[5] | Mikolajick T, Schroeder U, and Slesazeck S 2020 IEEE Trans. Electron Devices 67 1434 |
[6] | Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, and Zhu W G 2017 Nat. Commun. 8 14956 |
[7] | Zheng C X, Yu L, Zhu L, Collins J L, Kim D, Lou Y D, Xu C, Li M, Wei Z, Zhang Y P, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W, and Fuhrer M S 2018 Sci. Adv. 4 eaar7720 |
[8] | Liu F C, You L, Seyler K L, Li X, Yu P, Lin J, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, and Liu Z 2016 Nat. Commun. 7 12357 |
[9] | Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q, Chen X, and Ji S 2016 Science 353 274 |
[10] | Wang H and Qian X 2017 2D Mater. 4 015042 |
[11] | Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, and Nagashio K 2020 Nat. Commun. 11 2428 |
[12] | Zhang L, Tang C, Sanvito S, and Du A 2021 npj Comput. Mater. 7 135 |
[13] | Zhang J J, Guan J, Dong S, and Yakobson B I 2019 J. Am. Chem. Soc. 141 15040 |
[14] | Zhang X Y, Lai C W, Zhao X, Wang D Y, and Dai J Y 2005 Appl. Phys. Lett. 87 143102 |
[15] | Shimada T, Wang X, Kondo Y, and Kitamura T 2012 Phys. Rev. Lett. 108 067601 |
[16] | Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, and Hisama K 2020 Science 367 537 |
[17] | Shin Y H, Grinberg I, Chen I W, and Rappe A M 2007 Nature 449 881 |
[18] | Klomp A J, Khachaturyan R, Wallis T, Albe K, and Grunebohm A 2022 Phys. Rev. Mater. 6 104411 |
[19] | Ou Y J, Sun J, Li Y M, and Jiang A Q 2023 Chin. Phys. Lett. 40 038501 |
[20] | Zhao W, Fu Z, Deng J, Li S, Han Y, Li M R, Wang X, and Hong J 2021 Chin. Phys. Lett. 38 037701 |
[21] | Jin C F, Zhang S Q, Shen Z Q, and Li W L 2019 Chin. Phys. Lett. 36 107701 |
[22] | Zhang X Y, Wang B, Ji Y Z, Xue F, Wang Y, and Chen L Q 2023 Acta Mater. 242 118351 |
[23] | Lubk A, Gemming S, and Spaldin N A 2009 Phys. Rev. B 80 104110 |
[24] | Xu S Q, Zhang Y, Guo H Z, Geng W P, Bai Z L, and Jiang A Q 2017 Chin. Phys. Lett. 34 027701 |
[25] | Yan Y B, Xiang M z, Wang X y, Xu T, and Xuan F Z 2022 J. Appl. Phys. 132 074302 |
[26] | Behler J 2016 J. Chem. Phys. 145 170901 |
[27] | Mueller T, Hernandez A, and Wang C 2020 J. Chem. Phys. 152 050902 |
[28] | Zhang J, Zhang F, Wei D, Liu L, Liu X, Fang D, Zhang G X, Chen X, and Wang D 2022 Phys. Rev. B 105 094116 |
[29] | Wu J, Bai L, Huang J, Ma L, Liu J, and Liu S 2021 Phys. Rev. B 104 174107 |
[30] | Wu M H and Zeng X C 2016 Nano Lett. 16 3236 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|