Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047701    DOI: 10.1088/0256-307X/40/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Competition between Stepwise Polarization Switching and Chirality Coupling in Ferroelectric GeS Nanotubes
Hao-Chen Wang1,2, Zhi-Hao Wang2, Xuan-Yan Chen2, Su-Huai Wei2*, Wenguang Zhu1*, and Xie Zhang2*
1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2Beijing Computational Science Research Center, Beijing 100193, China
Cite this article:   
Hao-Chen Wang, Zhi-Hao Wang, Xuan-Yan Chen et al  2023 Chin. Phys. Lett. 40 047701
Download: PDF(4678KB)   PDF(mobile)(4787KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ferroelectricity of group-IV chalcogenides $MX$ ($M$ = Ge, Sn; $X$ = Se, S) monolayers has been extensively investigated. However, how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear. Employing an accurate deep-learning interatomic potential of first-principles precision, we uncover a general stepwise mechanism for polarization switching in zigzag and chiral GeS nanotubes, which has an energy barrier that is substantially lower than the one associated with the conventional one-step switching mechanism. The switching barrier (per atom) gradually decreases with increasing the number of intermediate steps and converges to a value that is almost independent of the tube diameter. In the chiral GeS nanotubes, the switching path of polarization with chirality coupling is preferred at less intermediate steps. This study unveils novel ferroelectric switching behaviors in one-dimensional nanotubes, which is critical to coupling ferroelectricity and chirality.
Received: 23 February 2023      Editors' Suggestion Published: 04 April 2023
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  61.46.Fg (Nanotubes)  
  63.20.dk\\  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao-Chen Wang
Zhi-Hao Wang
Xuan-Yan Chen
Su-Huai Wei
Wenguang Zhu
and Xie Zhang
[1] Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, and Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955
[2] Bhide V G, Deshmukh K G, Hegde M S 1962 Physica 28 871
[3] Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti J G A, and Rödel J 2017 Appl. Phys. Rev. 4 041305
[4] Gao J H, Xue D Z, Liu W F, Zhou C, and Ren X B 2017 Actuators 6 24
[5] Mikolajick T, Schroeder U, and Slesazeck S 2020 IEEE Trans. Electron Devices 67 1434
[6] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, and Zhu W G 2017 Nat. Commun. 8 14956
[7] Zheng C X, Yu L, Zhu L, Collins J L, Kim D, Lou Y D, Xu C, Li M, Wei Z, Zhang Y P, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W, and Fuhrer M S 2018 Sci. Adv. 4 eaar7720
[8] Liu F C, You L, Seyler K L, Li X, Yu P, Lin J, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, and Liu Z 2016 Nat. Commun. 7 12357
[9] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q, Chen X, and Ji S 2016 Science 353 274
[10] Wang H and Qian X 2017 2D Mater. 4 015042
[11] Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, and Nagashio K 2020 Nat. Commun. 11 2428
[12] Zhang L, Tang C, Sanvito S, and Du A 2021 npj Comput. Mater. 7 135
[13] Zhang J J, Guan J, Dong S, and Yakobson B I 2019 J. Am. Chem. Soc. 141 15040
[14] Zhang X Y, Lai C W, Zhao X, Wang D Y, and Dai J Y 2005 Appl. Phys. Lett. 87 143102
[15] Shimada T, Wang X, Kondo Y, and Kitamura T 2012 Phys. Rev. Lett. 108 067601
[16] Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, and Hisama K 2020 Science 367 537
[17] Shin Y H, Grinberg I, Chen I W, and Rappe A M 2007 Nature 449 881
[18] Klomp A J, Khachaturyan R, Wallis T, Albe K, and Grunebohm A 2022 Phys. Rev. Mater. 6 104411
[19] Ou Y J, Sun J, Li Y M, and Jiang A Q 2023 Chin. Phys. Lett. 40 038501
[20] Zhao W, Fu Z, Deng J, Li S, Han Y, Li M R, Wang X, and Hong J 2021 Chin. Phys. Lett. 38 037701
[21] Jin C F, Zhang S Q, Shen Z Q, and Li W L 2019 Chin. Phys. Lett. 36 107701
[22] Zhang X Y, Wang B, Ji Y Z, Xue F, Wang Y, and Chen L Q 2023 Acta Mater. 242 118351
[23] Lubk A, Gemming S, and Spaldin N A 2009 Phys. Rev. B 80 104110
[24] Xu S Q, Zhang Y, Guo H Z, Geng W P, Bai Z L, and Jiang A Q 2017 Chin. Phys. Lett. 34 027701
[25] Yan Y B, Xiang M z, Wang X y, Xu T, and Xuan F Z 2022 J. Appl. Phys. 132 074302
[26] Behler J 2016 J. Chem. Phys. 145 170901
[27] Mueller T, Hernandez A, and Wang C 2020 J. Chem. Phys. 152 050902
[28] Zhang J, Zhang F, Wei D, Liu L, Liu X, Fang D, Zhang G X, Chen X, and Wang D 2022 Phys. Rev. B 105 094116
[29] Wu J, Bai L, Huang J, Ma L, Liu J, and Liu S 2021 Phys. Rev. B 104 174107
[30] Wu M H and Zeng X C 2016 Nano Lett. 16 3236
Related articles from Frontiers Journals
[1] Yali Yang, Laurent Bellaiche, and Hongjun Xiang. Ferroelectricity in Charge-Ordering Crystals with Centrosymmetric Lattices[J]. Chin. Phys. Lett., 2022, 39(9): 047701
[2] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 047701
[3] Wei Zhao, Zhengqian Fu, Jianming Deng, Song Li, Yifeng Han, Man-Rong Li, Xueyun Wang, and Jiawang Hong. Observation of Ferroelastic and Ferroelectric Domains in AgNbO$_{3}$ Single Crystal[J]. Chin. Phys. Lett., 2021, 38(3): 047701
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 047701
[5] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 047701
[6] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 047701
[7] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 047701
[8] Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo, Wen-Ping Geng, Zi-Long Bai, An-Quan Jiang. Improved Polarization Retention of BiFeO$_{3}$ Thin Films Using GdScO$_{3}$ (110) Substrates[J]. Chin. Phys. Lett., 2017, 34(2): 047701
[9] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 047701
[10] LENG Sen-Lin, SHI Wei, LI Guo-Rong, ZHENG Liao-Ying. Potential Barrier Behavior of BaTiO3–(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic[J]. Chin. Phys. Lett., 2015, 32(4): 047701
[11] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 047701
[12] HUANG Nai-Xing, LÜ Tian-Quan, ZHANG Rui, WANG Yu-Ling, CAO Wen-Wu. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate[J]. Chin. Phys. Lett., 2014, 31(10): 047701
[13] YU Wen-Jie, ZHANG Bo, LIU Chang, XUE Zhong-Ying, CHEN Ming, ZHAO Qing-Tai. Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(1): 047701
[14] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 047701
[15] HAO Wen-Tao, ZHANG Jia-Liang, ZHENG Peng, WU Yan-Qing, TAN Yong-Qiang, ZHAO Xu. Influence of Orthorhombic-Tetragonal Phase Transition on Microwave Dielectric Dispersion of BaTiO3 Ceramic[J]. Chin. Phys. Lett., 2013, 30(12): 047701
Viewed
Full text


Abstract