Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047501    DOI: 10.1088/0256-307X/40/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Damping Properties of Single-Crystalline Co$_{55}$Mn$_{18}$Ga$_{27}$ and Co$_{50}$Mn$_{18}$Ga$_{32}$ Films
Jia-Rui Chen1, Yu-Ting Gong2, Xian-Yang Lu2*, Chen-Yu Zhang3, Yong Hu3*, Ming-Zhi Wang4, Zhong Shi4, Shuai Fu1, Hong-Ling Cai1,5, Ruo-Bai Liu1, Yuan Yuan1, Yu Lu1, Tian-Yu Liu1, Biao You1,5, Yong-Bing Xu, and Jun Du1,5*
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2York-Nanjing Joint Center (YNJC) for Spintronics and Nano-Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
3College of Sciences, Northeastern University, Shenyang 110819, China
4School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Cite this article:   
Jia-Rui Chen, Yu-Ting Gong, Xian-Yang Lu et al  2023 Chin. Phys. Lett. 40 047501
Download: PDF(3184KB)   PDF(mobile)(4365KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the structural, static magnetic and damping properties in two Mn-deficient magnetic Weyl semimetal Co-Mn-Ga (CMG) alloy films, i.e., Co$_{55}$Mn$_{18}$Ga$_{27}$ (CMG1) and Co$_{50}$Mn$_{18}$Ga$_{32}$ (CMG2), which were epitaxially grown on MgO (001) substrates. CMG1 has a mixing phase of $B_{2}$ and $L2_{1}$, larger saturation magnetization ($M_{\rm s} \sim 760$ emu/cm$^{3}$), stronger in-plane magnetic anisotropy. CMG2 has an almost pure $B2$ phase, smaller $M_{\rm s}$ ($\sim$ $330$ emu/cm$^{3}$), negligible in-plane magnetic anisotropy. Time-resolved magneto-optical Kerr effect results unambiguously demonstrate an obvious perpendicular standing spin wave (PSSW) mode in addition to the Kittel mode for both of the CMG films. The intrinsic damping constant is about 0.0055 and 0.015 for CMG1 and CMG2, respectively, which are both significantly larger than that of the stoichiometric CMG (i.e., Co$_{2}$MnGa) film reported previously. In combination with the first-principles calculations, the intrinsic damping properties of the Mn-deficient CMG films can be well explained by considering the increase of density of states at the Fermi level, reduction of $M_{\rm s}$, and excitation of the PSSW mode. These findings provide a new clue to tuning the magnetic damping of the magnetic Weyl semimetal film through slight off-stoichiometry.
Received: 26 January 2023      Published: 02 April 2023
PACS:  75.78.-n (Magnetization dynamics)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.30.Ds (Spin waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia-Rui Chen
Yu-Ting Gong
Xian-Yang Lu
Chen-Yu Zhang
Yong Hu
Ming-Zhi Wang
Zhong Shi
Shuai Fu
Hong-Ling Cai
Ruo-Bai Liu
Yuan Yuan
Yu Lu
Tian-Yu Liu
Biao You
Yong-Bing Xu
and Jun Du
[1] Belopolski I, Chang G, Cochran T A, Cheng Z J, Yang X P, Hugelmeyer C, Manna K, Yin J X, Cheng G, Multer D, Litskevich M, Shumiya N, Zhang S S, Shekhar C, Schröter N B M, Chikina A, Polley C, Thiagarajan B, Leandersson M, Adell J, Huang S M, Yao N, Strocov V N, Felser C, and Hasan M Z 2022 Nature 604 647
[2] Wang J, Lau Y C, Zhou W, Seki T, Sakuraba Y, Kubota T, Ito K, and Takanashi K 2022 Adv. Electron. Mater. 8 2101380
[3] Zhou W N, Yamamoto K, Miura A et al. 2021 Nat. Mater. 20 463
[4] Chang G Q, Xu S Y, Zhou X T, Huang S M, Singh B, Wang B K, Belopolski I, Yin J X, Zhang S T, Bansil A, Lin H, and Hasan M Z 2017 Phys. Rev. Lett. 119 156401
[5] Manna K, Sun Y, Muechler L, Kübler J, and Felser C 2018 Nat. Rev. Mater. 3 244
[6] Belopolski I, Manna K, Sanchez D S, Chang G, Ernst B, Yin J, Zhang S S, Cochran T, Shumiya N, Zheng H, Singh B, Bian G, Multer D, Litskevich M, Zhou X, Huang S M, Wang B, Chang T R, Xu S Y, Bansil A, Felser C, Lin H, and Hasan M Z 2019 Science 365 1278
[7] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P, and Nakatsuji S 2018 Nat. Phys. 14 1119
[8] Markou A, Kriegner D, Gayles J, Zhang L, Chen Y C, Ernst B, Lai Y H, Schnelle W, Chu Y H, Sun Y, and Felser C 2019 Phys. Rev. B 100 054422
[9] Reichlova H, Schlitz R, Beckert S, Swekis P, Markou A, Chen Y C, Kriegner D, Fabretti S, Park G H, Niemann A, Sudheendra S, Thomas A, Nielsch K, Felser C, and Goennenwein S T B 2018 Appl. Phys. Lett. 113 212405
[10] Higo T, Man H, Gopman D B, Wu L, Koretsune T, van 't ERVE O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, and Nakatsuji S 2018 Nat. Photon. 12 73
[11] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[12] Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, and Jia S 2016 Nat. Commun. 7 10735
[13] Chico J, Keshavarz S, Kvashnin Y, Pereiro M, Marco I D, Etz C, Eriksson O, Bergman A, and Bergqvist L 2016 Phys. Rev. B 93 214439
[14] Guillemard C, Petit-Watelot S, Devolder T, Pasquier L, Boulet P, Migot S, Ghanbaja J, Bertran F, and Andrieu S 2020 J. Appl. Phys. 128 241102
[15] Varaprasad B S D C S, Rajanikanth A, Takahashi Y K, and Hono K 2010 Appl. Phys. Express 3 023002
[16] Wang Q, Wen Z, Kubota T, Seki T, and Takanashi K 2019 Appl. Phys. Lett. 115 252401
[17] Hellman F, Hoffman A, Tserkovnyak Y, Beach G S D, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Dürr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimel A V, Koopmans B, Krivorotov L N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiavllew A, and Zink B L 2017 Rev. Mod. Phys. 89 025006
[18] Tang K, Wen Z, Lau Y C, Sukegawa H, Seki T, and Mitani S 2021 Appl. Phys. Lett. 118 062402
[19] Han J H, McGoldrick B C, Chou C T, Safi T S, Hou J T, and Liu L Q 2021 Appl. Phys. Lett. 119 212409
[20] Žutić I, Fabian J, and Sarma S D 2004 Rev. Mod. Phys. 76 323
[21] Hals K M D, Flensberg K, and Rudner M S 2015 Phys. Rev. B 92 094403
[22] Ma T Y, Luo Z, Li Z W, Qiao L, Wang T, and Li F S 2019 Chin. Phys. B 28 057505
[23] Benakli M, Torabi A F, Mallary M L, Zhou H, and Bertram H N 2001 IEEE Trans. Magn. 37 1564
[24] Li X, Zhang Z, Jin Q Y, and Liu Y 2009 New J. Phys. 11 023027
[25] Costa J D, Serrano-Guisan S, Lacoste B, Jenkins A S, Böhnert T, Tarequzzaman M, Borme J, Deepak F L, Paz E, Ventura J, Ferreira R, and Freitas P P 2017 Sci. Rep. 7 7237
[26] Zhu Z, Higo T, Nakatsuji S, and Otani Y 2020 AIP Adv. 10 085020
[27] Guin S N, Manna K, Noky J, Watzman S J, Fu C, Kumar N, Schnelle W, Shekhar C, Sun Y, Gooth J, and Fesler C 2019 NPG Asia Mater. 11 16
[28] Guillemard C, Petit-Watelot S, Pasquier L, Pierre D, Ghanbaja J, Rojas-Sánchez J C, Bataille A, Rault J, Fèvre P L, Bertran F, and Andrieu S 2019 Phys. Rev. Appl. 11 064009
[29] Guillemard C, Petit-Watelot S, Rojas-Sánchez J C, Hohlfeld J, Ghanbaja J, Bataille A, Fèvre P L, Bertran F, and Andrieu S 2019 Appl. Phys. Lett. 115 172401
[30] Swekis P, Sukhanov A S, Chen Y C, Gloskovskii A, Fecher G H, Panagiotopoulos I, Sichelschmidt J, Ukleev V, Devishvili A, Vorobiev A, Inosov D S, Goennenwein S T B, Felser C, and Markou A 2021 Nanomaterials 11 251
[31] Faregh R A, Boochani A, Masharian S R, and Jafarpour F H 2019 Int. Nano Lett. 9 339
[32] Galanakis I and Dederichs P H 2002 Phys. Rev. B 66 174429
[33] Shelke V, Srinivasan G, and Gupta A 2010 Phys. Status Solidi (RRL) 4 79
[34] Tu H, Liu B, Huang D, Ruan X, You B, Huang Z, Zhai Y, Gao Y, Wang J, Wei L, Yuan Y, Xu Y, and Du J 2017 Sci. Rep. 7 43971
[35] Tu H Q, Wang J, Huang Z C, Zhai Y, Zhu Z D, Hang Z, Qu J T, Zheng R K, Yuan Y, Liu R B, Zhang W, You B, and Du J 2020 J. Phys.: Condens. Matter 32 335804
[36] Lu X Y, Atkinson L J, Kuerbanjiang B, Liu B, Li G Q, Wang Y, Wang J L, Ruan X Z, Wu J, Evans R F L, Lazarov V K, Chantrell R W, and Xu Y B 2019 Appl. Phys. Lett. 114 192406
[37] Walowski J, Kaufmann M D, Lenk B, Hamann C, McCord J, and ünzenberg M M 2008 J. Phys. D 41 164016
[38] Lenk B, Eilers G, Hamrle J, and Münzenberg M 2010 Phys. Rev. B 82 134443
[39] Liu B, Ruan X, Wu Z, Tu H, Du J, Wu J, Lu X, He L, Zhang R, and Xu Y 2016 Appl. Phys. Lett. 109 042401
[40] Kamberský V 1976 Czech. J. Phys. B 26 1366
[41] Kamberský V 1970 Can. J. Phys. 48 2906
[42] Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, and Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[43] Kübler J, Williams A R, and Sommers C B 1983 Phys. Rev. B 28 1745
[44] Galanakis I, Dederichs P H, and Papanikola OU N 2002 Phys. Rev. B 66 134428
[45] Reitz J R and Stearns M B 1979 J. Appl. Phys. 50 2066
Related articles from Frontiers Journals
[1] Yangping Wang, Hongyan Zhou, Yibing Zhao, Fufu Liu, and Changjun Jiang. Low Voltage Reversible Manipulation of Ferromagnetic Resonance Response in CoFeB/HfO$_{2}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 047501
[2] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 047501
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 047501
[4] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 047501
[5] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 047501
[6] Xiao-Kuo Yang, Bin Zhang, Jia-Hao Liu, Ming-Liang Zhang, Wei-Wei Li, Huan-Qing Cui, Bo Wei. Shape Anisotropy and Resonance Mode Guided Reliable Interconnect Design for In-plane Magnetic Logic[J]. Chin. Phys. Lett., 2018, 35(5): 047501
[7] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 047501
[8] CHEN Cheng, PIAO Hong-Guang, SHIM Je-Ho, PAN Li-Qing, KIM Dong-Hyun. RC-Circuit-Like Dynamic Characteristic of the Magnetic Domain Wall in Flat Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2015, 32(08): 047501
Viewed
Full text


Abstract