Chin. Phys. Lett.  2023, Vol. 40 Issue (4): 047303    DOI: 10.1088/0256-307X/40/4/047303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS$_{2}$ Moiré Superlattice
Fanfan Wu1,2, Lu Li1,2, Qiaoling Xu3,4, Le Liu1,2, Yalong Yuan1,2, Jiaojiao Zhao1,2, Zhiheng Huang1,2, Xiaozhou Zan1,2, Kenji Watanabe5, Takashi Taniguchi6, Dongxia Shi1,2,3, Lede Xian3, Wei Yang1,2,3, Luojun Du1,2*, and Guangyu Zhang1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
5Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
6International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Cite this article:   
Fanfan Wu, Lu Li, Qiaoling Xu et al  2023 Chin. Phys. Lett. 40 047303
Download: PDF(5641KB)   PDF(mobile)(6039KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena, such as Mott insulator states, ferroelectric order, unconventional superconductivity and orbital ferromagnetism. Although remarkable progress has been achieved, current research in moiré physics has mainly focused on the single species properties, while the coupling between distinct moiré quantum phenomena remains elusive. Here we demonstrate, for the first time, the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS$_{2}$ moiré superlattice, where the twist angles are controlled in sequence to be $\sim$ $57^{\circ}$, $\sim$ $0^{\circ}$, and $\sim$ $-57 ^{\circ}$. Correlated insulator states are unambiguously established at moiré band filling factors $v = 1$, 2, 3 of twisted quadrilayer MoS$_{2}$. Remarkably, ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings, providing smoking gun evidences of the coupling between ferroelectricity and correlated states. Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications.
Received: 27 February 2023      Express Letter Published: 20 March 2023
PACS:  73.21.Cd (Superlattices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/4/047303       OR      https://cpl.iphy.ac.cn/Y2023/V40/I4/047303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fanfan Wu
Lu Li
Qiaoling Xu
Le Liu
Yalong Yuan
Jiaojiao Zhao
Zhiheng Huang
Xiaozhou Zan
Kenji Watanabe
Takashi Taniguchi
Dongxia Shi
Lede Xian
Wei Yang
Luojun Du
and Guangyu Zhang
[1] Novoselov K S, Mishchenko A, Carvalho A, and Castro N A H 2016 Science 353 aac9439
[2] Jin C H, Ma E Y, Karni O, Regan E C, Wang F, and Heinz T F 2018 Nat. Nanotechnol. 13 994
[3] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, and Duan X F 2016 Nat. Rev. Mater. 1 16042
[4] Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N, and Sun Z P 2021 Nat. Rev. Phys. 3 193
[5] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, and Young A F 2021 Nat. Rev. Mater. 6 201
[6] Chu Y B, Liu L, Yuan Y L, Shen C, Yang R, Shi D X, Yang W, and Zhang G Y 2020 Chin. Phys. B 29 128104
[7] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686
[8] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80
[9] Chen G R, Jiang L L, Wu S, Lyu B, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, and Wang F 2019 Nat. Phys. 15 237
[10] Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, and Zhang G Y 2020 Nat. Phys. 16 520
[11] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605
[12] Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, and Wang F 2020 Nature 579 56
[13] Shen C, Ying J H, Liu L, Liu J P, Li N, Wang S P, Tang J, Zhao Y C, Chu Y B, Watanabe K, Taniguchi T, Yang R, Shi D X, Qu F M, Lu L, Yang W, and Zhang G Y 2021 Chin. Phys. Lett. 38 047301
[14] Wu S, Zhang Z Y, Watanabe K, Taniguchi T, and Andrei E Y 2021 Nat. Mater. 20 488
[15] Regan E C, Wang D Q, Jin C H, Bakti U M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, and Wang F 2020 Nature 579 359
[16] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, and Shan J 2020 Nature 587 214
[17] Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367
[18] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-Leon H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, and Gorbachev R 2022 Nat. Nanotechnol. 17 390
[19] Zheng Z R, Ma Q, Bi Z, de la B S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, and Jarillo-Herrero P 2020 Nature 588 71
[20] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[21] Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, and Wang F 2019 Nature 572 215
[22] Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, and Efetov D K 2019 Nature 574 653
[23] Regan E C, Wang D Q, Paik E Y, Zeng Y X, Zhang L, Zhu J H, MacDonald A H, Deng H, and Wang F 2022 Nat. Rev. Mater. 7 778
[24] Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W, and Xu X D 2019 Nature 567 66
[25] Lin Q, Fang H, Liu Y, Zhang Y, Fischer M, Li J, Hagel J, Brem S, Malic E, Stenger N, Sun Z, Wubs M, and Xiao S 2023 arXiv:2302.01266 [physcis.optics]
[26] Yu H Y, Liu G B, Tang J J, Xu X D, and Yao W 2017 Sci. Adv. 3 e1701696
[27] Ma C, Yuan S F, Cheung P, Watanabe K, Taniguchi T, Zhang F, and Xia F N 2022 Nature 604 266
[28] Xian L D, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, and Rubio A 2021 Nat. Commun. 12 5644
[29] Naik M H, Kundu S, Maity I, and Jain M 2020 Phys. Rev. B 102 075413
[30] Wang Q Q, Tang J, Li X M, Tian J P, Liang J, Li N, Ji D P, Xian L D, Guo Y T, Li L, Zhang Q H, Chu Y B, Wei Z, Zhao Y C, Du L J, Yu H, Bai X D, Gu L, Liu K H, Yang W, Yang R, Shi D X, and Zhang G Y 2022 Natl. Sci. Rev. 9 nwac077
[31] Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X R, Hone J, Rubio A, Pasupathy A N, and Dean C R 2020 Nat. Mater. 19 861
[32] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534
[33] Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, and Zhang G Y 2017 Adv. Mater. 29 1702522
[34] Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, and Ye P D 2019 Nat. Electron. 2 580
[35] Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, and Duan C G 2020 Adv. Electron. Mater. 6 1900818
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 047303
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 047303
[3] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 047303
[4] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 047303
[5] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 047303
[6] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 047303
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047303
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 047303
[9] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 047303
[10] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 047303
[11] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 047303
[12] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 047303
[13] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 047303
[14] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 047303
[15] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 047303
Viewed
Full text


Abstract