CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire |
Jierong Huo1†, Zezhou Xia1†, Zonglin Li1†, Shan Zhang1†, Yuqing Wang2, Dong Pan3, Qichun Liu2, Yulong Liu2, Zhichuan Wang4, Yichun Gao1, Jianhua Zhao3, Tiefu Li2,5, Jianghua Ying6*, Runan Shang2, and Hao Zhang1,2,7* |
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China 3State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 5School of Integrated Circuits and Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China 6Yangtze Delta Region Industrial Innovation Center of Quantum and Information, Suzhou 215133, China 7Frontier Science Center for Quantum Information, Beijing 100084, China
|
|
Cite this article: |
Jierong Huo, Zezhou Xia, Zonglin Li et al 2023 Chin. Phys. Lett. 40 047302 |
|
|
Abstract We study a gate-tunable superconducting qubit (gatemon) based on a thin InAs-Al hybrid nanowire. Using a gate voltage to control its Josephson energy, the gatemon can reach the strong coupling regime to a microwave cavity. In the dispersive regime, we extract the energy relaxation time $T_1\sim0.56$ µs and the dephasing time $T_2^* \sim0.38$ µs. Since thin InAs-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks, our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.
|
|
Received: 09 February 2023
Express Letter
Published: 16 March 2023
|
|
PACS: |
73.21.Hb
|
(Quantum wires)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.-j
|
(Superconducting devices)
|
|
|
|
|
[1] | Kitaev A 2003 Ann. Phys. 303 2 |
[2] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 |
[3] | Read N and Green D 2000 Phys. Rev. B 61 10267 |
[4] | Kitaev A Y 2001 Phys.-Usp. 44 131 |
[5] | Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001 |
[6] | Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002 |
[7] | Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003 |
[8] | Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557 |
[9] | Gül Ö, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanable K, Taniguchi T, and Kouwenhoven L P 2018 Nat. Nanotechnol. 13 192 |
[10] | Zhang H, de Moor M W A, Bommer J D S et al. 2021 arXiv:2101.11456 [cond-mat.mes-hall] |
[11] | Song H D, Zhang Z T, Pan D, Liu D H, Wang Z Y, Cao Z, Liu L, Wen L J, Liao D Y, Zhuo R, Liu D E, Shang R, Zhao J H, and Zhang H 2022 Phys. Rev. Res. 4 033235 |
[12] | Wang Z Y, Song H D, Pan D, Zhang Z T, Miao W T, Li R D, Cao Z, Zhang G, Liu L, Wen L J, Zhuo R, Liu D E, He K, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 129 167702 |
[13] | Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygard J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575 |
[14] | Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128 |
[15] | Alicea J, Oreg Y, Refael G, Oppen F, and Fisher M 2010 Nat. Phys. 7 412 |
[16] | Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, and Beenakker C W J 2013 Phys. Rev. B 88 035121 |
[17] | Knapp C, Zaletel M, Liu D E, Cheng M, Bonderson P, and Nayak C 2016 Phys. Rev. X 6 041003 |
[18] | Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X 6 031016 |
[19] | Plugge S, Rasmussen A, Egger R, and Flensberg K 2017 New J. Phys. 19 012001 |
[20] | Vijay S and Fu L 2016 Phys. Rev. B 94 235446 |
[21] | Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B 95 235305 |
[22] | Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319 |
[23] | Houck A, Schuster D, Gambetta J, Schreier J, Johnson B, Chow J, Frunzio L, Majer J, Devoret M, Girvin S, and Schoelkopf R 2007 Nature 449 328 |
[24] | Ginossar E and Grosfeld E 2014 Nat. Commun. 5 4772 |
[25] | Yavilberg K, Ginossar E, and Grosfeld E 2015 Phys. Rev. B 92 075143 |
[26] | Li T, Coish W A, Hell M, Flensberg K, and Leijnse M 2018 Phys. Rev. B 98 205403 |
[27] | Ávila J, Prada E, San-Jose P, and Aguado R 2020 Phys. Rev. Res. 2 033493 |
[28] | Chirolli L, Yao N Y, and Moore J E 2022 Phys. Rev. Lett. 129 177701 |
[29] | Larsen T W, Petersson K D, Kuemmeth F, Jespersen T S, Krogstrup P, Nygård J, and Marcus C M 2015 Phys. Rev. Lett. 115 127001 |
[30] | de Lange G, van Heck B, Bruno A, van Woerkom D J, Geresdi A, Plissard S R, Bakkers E P A M, Akhmerov A R, and DiCarlo L 2015 Phys. Rev. Lett. 115 127002 |
[31] | Casparis L, Larsen T W, Olsen M S, Kuemmeth F, Krogstrup P, Nygård J, Petersson K D, and Marcus C M 2016 Phys. Rev. Lett. 116 150505 |
[32] | Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P, and DiCarlo L 2018 Phys. Rev. Lett. 120 100502 |
[33] | Kringhøj A, van Heck B, Larsen T W, Erlandsson O, Sabonis D, Krogstrup P, Casparis L, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 124 246803 |
[34] | Bargerbos A, Uilhoorn W, Yang C K, Krogstrup P, Kouwenhoven L P, de Lange G, van Heck B, and Kou A 2020 Phys. Rev. Lett. 124 246802 |
[35] | Larsen T W, Gershenson M E, Casparis L, Kringhøj A, Pearson N J, McNeil R P G, Kuemmeth F, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 056801 |
[36] | Sabonis D, Erlandsson O, Kringhøj A, van Heck B, Larsen T W, Petkovic I, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 156804 |
[37] | Bargerbos A, Pita-Vidal M, Žitko R, Ávila J, Splitthoff L J, Grünhaupt L, Wesdorp J J, Andersen C K, Liu Y, Kouwenhoven L P, Aguado R, Kou A, and van Heck B 2022 PRX Quantum 3 030311 |
[38] | Caroff P, Dick K A, Johansson J, Messing M E, Deppert K, and Samuelson L 2009 Nat. Nanotechnol. 4 50 |
[39] | Shtrikman H, Popovitz-Biro R, Kretinin A, Houben L, Heiblum M, Bukała M, Galicka M, Buczko R, and Kacman P 2009 Nano Lett. 9 1506 |
[40] | Pan D, Fu M, Yu X, Wang X, Zhu L, Nie S, Wang S, Chen Q, Xiong P, Molnár S, and Zhao J 2014 Nano Lett. 14 1214 |
[41] | Pientka F, Kells G, Romito A, Brouwer P W, and Von Oppen F 2012 Phys. Rev. Lett. 109 227006 |
[42] | Rainis D, Trifunovic L, Klinovaja J, and Loss D 2013 Phys. Rev. B 87 024515 |
[43] | Pan H N and Sarma S D 2020 Phys. Rev. Res. 2 013377 |
[44] | Pan D, Song H, Zhang S, Liu L, Wen L, Liao D, Zhuo R, Wang Z, Zhang Z, Yang S, Ying J, Miao W, Shang R, Zhang H, and Zhao J 2022 Chin. Phys. Lett. 39 058101 |
[45] | Wang Z, Pan D, Zhang S et al. 2023 Supercurrent in a Quasi-Ballistic Thin InAs-Al Hybrid Nanowire Device (to be submitted) |
[46] | Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, and Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601 |
[47] | Purcell E M, Torrey H C, and Pound R V 1946 Phys. Rev. 69 37 |
[48] | Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M, Girvin S M, and Schoelkopf R J 2007 Nature 445 515 |
[49] | Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318 |
[50] | Aghaee M, Akkala A, Alam Z et al. 2022 arXiv:2207.02472 [cond-mat.mes-hall] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|