CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States |
Zhi-Xuan Li1, Shuai Yin2, and Yu-Rong Shu1* |
1School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 2School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
|
|
Cite this article: |
Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu 2023 Chin. Phys. Lett. 40 037501 |
|
|
Abstract We explore the imaginary-time relaxation dynamics near quantum critical points with semi-ordered initial states. Different from the case with homogeneous ordered initial states, in which the order parameter $M$ decays homogeneously as $M\propto \tau^{-\beta/\nu z}$, here $M$ depends on the location $x$, showing rich scaling behaviors. Similar to the classical relaxation dynamics with an initial domain wall in model A, which describes the purely dissipative dynamics, here as the imaginary time evolves, the domain wall expands into an interfacial region with growing size. In the interfacial region, the local order parameter decays as $M\propto \tau^{-\beta_1/\nu z}$, with $\beta_1$ being an additional dynamic critical exponent. Far away from the interfacial region the local order parameter decays as $M\propto \tau^{-\beta/\nu z}$ in the short-time stage, then crosses over to the scaling behavior of $M\propto \tau^{-\beta_1/\nu z}$ when the location $x$ is absorbed in the interfacial region. A full scaling form characterizing these scaling properties is developed. The quantum Ising model in both one and two dimensions are taken as examples to verify the scaling theory. In addition, we find that for the quantum Ising model the scaling function is an analytical function and $\beta_1$ is not an independent exponent.
|
|
Received: 22 December 2022
Published: 18 February 2023
|
|
PACS: |
75.40.Gb
|
(Dynamic properties?)
|
|
64.60.Ht
|
(Dynamic critical phenomena)
|
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
|
|
|
[1] | Satzinger K J, Liu Y J, Smith A et al. 2021 Science 374 1237 |
[2] | Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, and Lukin M D 2021 Science 374 1242 |
[3] | King A D, Raymond J, Lanting T et al. 2022 arXiv:2207.13800 [quant-ph] |
[4] | Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885 |
[5] | Motta M, Sun C, Tan A T K, O'Rourke M J, Ye E, Minnich A J, Brandão G S L, and Chan G K L 2020 Nat. Phys. 16 205 |
[6] | Nishi H, Kosugi T, and Matsushita Y I 2021 npj Quantum Inf. 7 85 |
[7] | Yin S, Mai P, and Zhong F 2014 Phys. Rev. B 89 144115 |
[8] | Zhang S Y, Yin S, and Zhong F 2014 Phys. Rev. E 90 042104 |
[9] | Janssen H K, Schaub B, and Schmittmann B 2014 Z. Phys. B: Condens. Matter 73 539 |
[10] | Li Z B, Schülke L, and Zheng B 1995 Phys. Rev. Lett. 74 3396 |
[11] | Li Z, Schülke L, and Zheng B 1996 Phys. Rev. E 53 2940 |
[12] | Zheng B 1998 Int. J. Mod. Phys. B 12 1419 |
[13] | Ying H P, Luo H J, Schülke L, and Zheng B 1998 Mod. Phys. Lett. B 12 1237 |
[14] | Zheng B 1996 Phys. Rev. Lett. 77 679 |
[15] | Shu Y R, Yin S, and Yao D X 2017 Phys. Rev. B 96 094304 |
[16] | Shu Y R and Yin S 2020 Phys. Rev. B 102 104425 |
[17] | Shu Y R, Jian S K, and Yin S 2022 Phys. Rev. Lett. 128 020601 |
[18] | Shu Y R and Yin S 2022 Phys. Rev. B 105 104420 |
[19] | Okano K, Schülke L, Yamagishi K, and Zheng B 1997 Nucl. Phys. B 485 727 |
[20] | Jaster A, Mainville J, Schülke L, and Zheng B 1999 J. Phys. A 32 1395 |
[21] | Domb C and Lebowitz J L 1986 Phase Transitions and Critical Phenomena (New York: Academic Press) vol 10 |
[22] | Zhou N J and Zheng B 2007 Europhys. Lett. 78 56001 |
[23] | Zhou N J and Zheng B 2008 Phys. Rev. E 77 051104 |
[24] | Yoshinaga A, Hakoshima H, Imoto T, Matsuzaki Y, and Hamazaki R 2022 Phys. Rev. Lett. 129 090602 |
[25] | Hart O and Nandkishore R 2022 Phys. Rev. B 106 214426 |
[26] | Balducci F, Gambassi A, Lerose A, Scardicchio A, and Vanoni C 2022 Phys. Rev. Lett. 129 120601 |
[27] | Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 |
[28] | Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) |
[29] | Sondhi S L, Girvin S M, Carini J P, and Shahar D 1997 Rev. Mod. Phys. 69 315 |
[30] | Vojta M 2003 Rep. Prog. Phys. 66 2069 |
[31] | Sandvik A W 2010 AIP Conf. Proc. 1297 135 |
[32] | Farhi E, Gosset D, Hen I, Sandvik A W, Shor P, Young A P, and Zamponi F 2012 Phys. Rev. A 86 052334 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|