CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2) |
Linchao Yu1†, Song Huang1†, Xiangzhuo Xing1,2*, Xiaolei Yi3, Yan Meng4, Nan Zhou5, Zhixiang Shi6*, and Xiaobing Liu1,2* |
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China 3College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China 4Department of Physics, Jining University, Qufu 273155, China 5Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 6School of Physics, Southeast University, Nanjing 211189, China
|
|
Cite this article: |
Linchao Yu, Song Huang, Xiangzhuo Xing et al 2023 Chin. Phys. Lett. 40 037403 |
|
|
Abstract Research of vortex properties in type-II superconductors is of great importance for potential applications and fundamental physics. Here, we present a comprehensive study of the critical current density $J_{\rm c}$, vortex pinning, and phase diagram of NaCl-type InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2) superconductors synthesized by high-pressure technique. Our studies reveal that the values of $J_{\rm c}$ calculated by the Bean model exceed $10^{4}$ A/cm$^{2}$ in the InTe$_{1- x}$Se$_{x}$ system, signifying good potential for applications. The magnetic hysteresis loops (MHLs) show an asymmetric characteristic at various degrees, which is associated with the surface barrier. Intriguingly, a rare phenomenon in which the second magnetization peak in the MHLs occurs only in the field-descending branch is detected in InTe$_{0.9}$Se$_{0.1}$. Such an anomalous behavior has not been observed before and can be described by considering the respective roles of the surface barrier and bulk pinning in the field-ascending and field-descending branches. By analyzing the pinning force density versus reduced field, the pinning mechanisms are studied in detail in the framework of the Dew-Hughes model. Finally, combining the results of resistivity and magnetization measurements, the vortex phase diagrams are constructed and discussed.
|
|
Received: 03 February 2023
Editors' Suggestion
Published: 07 March 2023
|
|
PACS: |
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Wx
|
(Vortex pinning (includes mechanisms and flux creep))
|
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
|
|
|
[1] | Nayak C, Simon S H, Freedman M, and Das S S 2008 Rev. Mod. Phys. 80 1083 |
[2] | Erickson A S, Chu J H, Geballe T H, and Fisher I R 2009 Phys. Rev. B 79 024520 |
[3] | Zhong R D, Schneeloch J A, Shi X Y, Xu Z J, Zhang C, Li Q, and Gu G D 2013 Phys. Rev. B 88 020505(R) |
[4] | Balakrishnan G, Cavendish S, and Lees M R 2013 Phys. Rev. B 87 140507(R) |
[5] | Haldolaarachchige N, Gibson Q, Xie W, Kushwaha S, and Cava R J 2016 Phys. Rev. B 93 024520 |
[6] | Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Segawa K, and Ando Y 2012 Nat. Phys. 8 800 |
[7] | Hsieh T H, Lin H, Liu J, Bansil A, and Fu L 2012 Nat. Commun. 3 982 |
[8] | Novak M, Sasaki S, Segawa K, and Ando Y 2013 Phys. Rev. B 88 140502(R) |
[9] | He L P, Zhang Z, Pan J, Zhou S Y, and Li S Y 2013 Phys. Rev. B 88 014523 |
[10] | Smylie M P, Kobayashi K, Takahashi T, Chaparro C, Kwok W K, and Welp U 2020 Phys. Rev. B 101 094513 |
[11] | Saghir M, Barker J A T, Hillier A D, and Lees M R 2014 Phys. Rev. B 90 064508 |
[12] | Maeda S, Hirose R, Matano K, Ando Y, and Zheng G q 2017 Phys. Rev. B 96 104502 |
[13] | Wang Y M et al. 2022 Phys. Rev. B 106 054506 |
[14] | Kobayashi K, Jeschke H O, and Akimitsu J 2018 Phys. Rev. B 97 104511 |
[15] | Smylie M P, Kobayashi K, Dans J Z, Hebbeker H, Kwok W K, and Welp U 2022 Phys. Rev. B 106 054503 |
[16] | Kriener M, Tokura Y, and Taguchi Y 2022 Phys. Rev. B 106 134519 |
[17] | Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510 |
[18] | Brandt E H 1999 Phys. Rev. B 60 11939 |
[19] | Shen B et al. 2015 Phys. Rev. B 91 174512 |
[20] | Zhou W, Xing X Z, Zhao H J, and Shi Z X 2016 Sci. Rep. 6 22278 |
[21] | Abulafia Y, Shaulov A, Wolfus Y, Burlachkov L, and Yeshurun Y 1996 Phys. Rev. Lett. 77 1596 |
[22] | Nishizaki T, Naito T, and Kobayashi N 1998 Phys. Rev. B 58 11169 |
[23] | Rosenstein B, Shapiro B Y, Shapiro I, Shaulov A, and Yeshurun Y 2005 Phys. Rev. B 72 144512 |
[24] | Gao L L et al. 2022 Appl. Phys. Lett. 120 092602 |
[25] | Xing X Z, Yi X L, Li M, Meng Y, Ge J Y, and Shi Z X 2020 Supercond. Sci. Technol. 33 114005 |
[26] | Bean C P 1964 Rev. Mod. Phys. 36 31 |
[27] | Sun Y, Pyon S, Tamegai T, Kobayashi R, Watashige T, Matsuda Y, and Shibauchi T 2015 Phys. Rev. B 92 144509 |
[28] | Wang A, Wu L, Ivanovski V N, Warren J B, Zhu Y, and Petrovic C 2016 Phys. Rev. B 94 094506 |
[29] | Xing X Z, Sun Y, Yi X et al. 2021 Supercond. Sci. Technol. 34 055006 |
[30] | Dew-Hughes D 1974 Philos. Mag. 30 293 |
[31] | Blatter G, Feigel'man M V, Larkin A I, and Vinokur V M 1994 Rev. Mod. Phys. 66 1125 |
[32] | Vlasenko V A et al. 2021 Supercond. Sci. Technol. 34 035019 |
[33] | Sun Y, Shi Z X, Miura M, and Tamegai T 2010 J. Appl. Phys. 108 073920 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|