Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 037403    DOI: 10.1088/0256-307X/40/3/037403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)
Linchao Yu1†, Song Huang1†, Xiangzhuo Xing1,2*, Xiaolei Yi3, Yan Meng4, Nan Zhou5, Zhixiang Shi6*, and Xiaobing Liu1,2*
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
2Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China
3College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
4Department of Physics, Jining University, Qufu 273155, China
5Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
6School of Physics, Southeast University, Nanjing 211189, China
Cite this article:   
Linchao Yu, Song Huang, Xiangzhuo Xing et al  2023 Chin. Phys. Lett. 40 037403
Download: PDF(5996KB)   PDF(mobile)(6120KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Research of vortex properties in type-II superconductors is of great importance for potential applications and fundamental physics. Here, we present a comprehensive study of the critical current density $J_{\rm c}$, vortex pinning, and phase diagram of NaCl-type InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2) superconductors synthesized by high-pressure technique. Our studies reveal that the values of $J_{\rm c}$ calculated by the Bean model exceed $10^{4}$ A/cm$^{2}$ in the InTe$_{1- x}$Se$_{x}$ system, signifying good potential for applications. The magnetic hysteresis loops (MHLs) show an asymmetric characteristic at various degrees, which is associated with the surface barrier. Intriguingly, a rare phenomenon in which the second magnetization peak in the MHLs occurs only in the field-descending branch is detected in InTe$_{0.9}$Se$_{0.1}$. Such an anomalous behavior has not been observed before and can be described by considering the respective roles of the surface barrier and bulk pinning in the field-ascending and field-descending branches. By analyzing the pinning force density versus reduced field, the pinning mechanisms are studied in detail in the framework of the Dew-Hughes model. Finally, combining the results of resistivity and magnetization measurements, the vortex phase diagrams are constructed and discussed.
Received: 03 February 2023      Editors' Suggestion Published: 07 March 2023
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  62.50.-p (High-pressure effects in solids and liquids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/037403       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/037403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Linchao Yu
Song Huang
Xiangzhuo Xing
Xiaolei Yi
Yan Meng
Nan Zhou
Zhixiang Shi
and Xiaobing Liu
[1] Nayak C, Simon S H, Freedman M, and Das S S 2008 Rev. Mod. Phys. 80 1083
[2] Erickson A S, Chu J H, Geballe T H, and Fisher I R 2009 Phys. Rev. B 79 024520
[3] Zhong R D, Schneeloch J A, Shi X Y, Xu Z J, Zhang C, Li Q, and Gu G D 2013 Phys. Rev. B 88 020505(R)
[4] Balakrishnan G, Cavendish S, and Lees M R 2013 Phys. Rev. B 87 140507(R)
[5] Haldolaarachchige N, Gibson Q, Xie W, Kushwaha S, and Cava R J 2016 Phys. Rev. B 93 024520
[6] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Segawa K, and Ando Y 2012 Nat. Phys. 8 800
[7] Hsieh T H, Lin H, Liu J, Bansil A, and Fu L 2012 Nat. Commun. 3 982
[8] Novak M, Sasaki S, Segawa K, and Ando Y 2013 Phys. Rev. B 88 140502(R)
[9] He L P, Zhang Z, Pan J, Zhou S Y, and Li S Y 2013 Phys. Rev. B 88 014523
[10] Smylie M P, Kobayashi K, Takahashi T, Chaparro C, Kwok W K, and Welp U 2020 Phys. Rev. B 101 094513
[11] Saghir M, Barker J A T, Hillier A D, and Lees M R 2014 Phys. Rev. B 90 064508
[12] Maeda S, Hirose R, Matano K, Ando Y, and Zheng G q 2017 Phys. Rev. B 96 104502
[13] Wang Y M et al. 2022 Phys. Rev. B 106 054506
[14] Kobayashi K, Jeschke H O, and Akimitsu J 2018 Phys. Rev. B 97 104511
[15] Smylie M P, Kobayashi K, Dans J Z, Hebbeker H, Kwok W K, and Welp U 2022 Phys. Rev. B 106 054503
[16] Kriener M, Tokura Y, and Taguchi Y 2022 Phys. Rev. B 106 134519
[17] Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510
[18] Brandt E H 1999 Phys. Rev. B 60 11939
[19] Shen B et al. 2015 Phys. Rev. B 91 174512
[20] Zhou W, Xing X Z, Zhao H J, and Shi Z X 2016 Sci. Rep. 6 22278
[21] Abulafia Y, Shaulov A, Wolfus Y, Burlachkov L, and Yeshurun Y 1996 Phys. Rev. Lett. 77 1596
[22] Nishizaki T, Naito T, and Kobayashi N 1998 Phys. Rev. B 58 11169
[23] Rosenstein B, Shapiro B Y, Shapiro I, Shaulov A, and Yeshurun Y 2005 Phys. Rev. B 72 144512
[24] Gao L L et al. 2022 Appl. Phys. Lett. 120 092602
[25] Xing X Z, Yi X L, Li M, Meng Y, Ge J Y, and Shi Z X 2020 Supercond. Sci. Technol. 33 114005
[26] Bean C P 1964 Rev. Mod. Phys. 36 31
[27] Sun Y, Pyon S, Tamegai T, Kobayashi R, Watashige T, Matsuda Y, and Shibauchi T 2015 Phys. Rev. B 92 144509
[28] Wang A, Wu L, Ivanovski V N, Warren J B, Zhu Y, and Petrovic C 2016 Phys. Rev. B 94 094506
[29] Xing X Z, Sun Y, Yi X et al. 2021 Supercond. Sci. Technol. 34 055006
[30] Dew-Hughes D 1974 Philos. Mag. 30 293
[31] Blatter G, Feigel'man M V, Larkin A I, and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[32] Vlasenko V A et al. 2021 Supercond. Sci. Technol. 34 035019
[33] Sun Y, Shi Z X, Miura M, and Tamegai T 2010 J. Appl. Phys. 108 073920
Related articles from Frontiers Journals
[1] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 037403
[2] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 037403
[3] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 037403
[4] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 037403
[5] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 037403
[6] Juanjuan Liu, A. T. Savici, G. E. Granroth, K. Habicht, Y. Qiu, Jin Hu, Z. Q. Mao, Wei Bao. A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$[J]. Chin. Phys. Lett., 2018, 35(12): 037403
[7] Yiyuan Mao, Jun Li, Yulong Huan, Jie Yuan, Zi-an Li, Ke Chai, Mingwei Ma, Shunli Ni, Jinpeng Tian, Shaobo Liu, Huaxue Zhou, Fang Zhou, Jianqi Li, Guangming Zhang, Kui Jin, Xiaoli Dong, Zhongxian Zhao. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System[J]. Chin. Phys. Lett., 2018, 35(5): 037403
[8] Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang, Bo Liu, Xiao-Yong Zhao, Dong-Yan Chen, Bin Zhang, Hao Wang, Hai-Bo Li, Shi-Gui Zhang, Yu-Ping Jiang, Bing Luo, Xiao-Wen Zhou, Tao Wang, Xiao Yu, Xiao-Yun Le. Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2017, 34(5): 037403
[9] Wei-Ke Wang, Yan Liu, Ji-Yong Yang, Hai-Feng Du, Wei Ning, Lang-Sheng Ling, Wei Tong, Zhe Qu, Zhao-Rong Yang, Ming-Liang Tian, Yu-Heng Zhang. The 45K Onset Superconductivity and the Suppression of the Nematic Order in FeSe by Electrolyte Gating[J]. Chin. Phys. Lett., 2016, 33(05): 037403
[10] YANG Jie, ZHOU Rui, WEI Lin-Lin, YANG Huai-Xin, LI Jian-Qi, ZHAO Zhong-Xian, ZHENG Guo-Qing. New Superconductivity Dome in LaFeAsO1−xFx Accompanied by Structural Transition[J]. Chin. Phys. Lett., 2015, 32(10): 037403
[11] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 037403
[12] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 037403
[13] D. Momeni, R. Myrzakulov. Universality of a Critical Magnetic Field in a Holographic Superconductor[J]. Chin. Phys. Lett., 2015, 32(4): 037403
[14] YE Feng, BAO Wei, CHI Song-Xue, Antonio M. dos Santos, Jamie J. Molaison, FANG Ming-Hu, WANG Hang-Dong, MAO Qian-Hui, WANG Jin-Chen, LIU Juan-Juan, SHENG Jie-Ming. High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl,Rb)2Fe4Se5 Superconductor[J]. Chin. Phys. Lett., 2014, 31(12): 037403
[15] R. Masrour, M. Hamedoun, A. Benyoussef , E. K. Hlil, O. Mounkachi, H. El Moussaoui. Calculation of Exchange Constants in Spinels Chromites ZnxCo1−xCr2O4[J]. Chin. Phys. Lett., 2014, 31(03): 037403
Viewed
Full text


Abstract