CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ |
Wenjing Liu1,2, Heming Zha1,2, Gen-Da Gu3, Xiaoping Shen4, Mao Ye1,2*, and Shan Qiao1,2,5* |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA 4State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China 5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Wenjing Liu, Heming Zha, Gen-Da Gu et al 2023 Chin. Phys. Lett. 40 037402 |
|
|
Abstract Seeking new order parameters and the related broken symmetry and studying their relationship with phase transition have been important topics in condensed matter physics. Here, by using spin- and angle-resolved photoemission spectroscopy, we confirm the helical spin texture caused by spin-layer locking in the nodal region in the cuprate superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ and discover the anisotropy of spin polarizations at nodes along $\varGamma$–$X$ and $\varGamma$–$Y$ directions. The breaking of $C_{4}$ rotational symmetry in electronic spin texture may give deeper insights into understanding the ground state of cuprate superconductors.
|
|
Received: 23 November 2022
Editors' Suggestion
Published: 28 February 2023
|
|
PACS: |
74.72.-h
|
(Cuprate superconductors)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
|
|
|
[1] | Ando Y, Segawa K, Komiya S et al. 2002 Phys. Rev. Lett. 88 137005 |
[2] | Lawler M J, Fujita K, Lee J et al. 2010 Nature 466 347 |
[3] | Coldea1 A I and Watson M D 2018 Annu. Rev. Condens. Matter Phys. 9 125 |
[4] | Wen C H P et al. 2016 Nat. Commun. 7 10840 |
[5] | Nakayama K, Sato T, Dobashi T et al. 2006 Phys. Rev. B 74 054505 |
[6] | Mans A, Santoso I, Huang Y, Siu W K et al. 2006 Phys. Rev. Lett. 96 107007 |
[7] | Koitzsch A, Borisenko S V, Kordyuk A A et al. 2004 Phys. Rev. B 69 220505(R) |
[8] | Singh D J and Pickett W E 1995 Phys. Rev. B 51 3128 |
[9] | Aebi P, Osterwalder J, Schwaller P et al. 1994 Phys. Rev. Lett. 72 2757 |
[10] | Ding H, Bellman A F, Campuzano J C et al. 1996 Phys. Rev. Lett. 76 1533 |
[11] | Mesot J, Norman M R, Ding H et al. 1999 Phys. Rev. Lett. 82 2618 |
[12] | Liu J, Zhao L, Gao Q et al. 2019 Chin. Phys. B 28 077403 |
[13] | Gao Q, Yan H, Liu J et al. 2020 Phys. Rev. B 101 014513 |
[14] | Osterwalder J, Aebi P, Schwaller P et al. 1995 Appl. Phys. A 60 247 |
[15] | Gotlieb K, Lin C Y, Serbyn M et al. 2018 Science 362 1271 |
[16] | Zhang X W, Liu Q H, Luo J W et al. 2014 Nat. Phys. 10 387 |
[17] | Ji F H, Shi T, Ye M et al. 2016 Phys. Rev. Lett. 116 177601 |
[18] | Koshibae W, Ohta Y, and Maekawa S 1993 Phys. Rev. B 47 3391 |
[19] | Tranquada J M, Sternlieb B, Axe J D et al. 1995 Nature 375 561 |
[20] | Manzke R, Müller R, Janowitz C, Schneider M, Krapf A, and Dwelk H 2001 Phys. Rev. B 63 100504 |
[21] | Yaji K, Kuoda K, Toyohisa S et al. 2017 Nat. Commun. 8 14588 |
[22] | Fong H F, Bourges P, Sidis Y et al. 1999 Nature 398 588 |
[23] | Zheng B X, Chung C M, Corboz P et al. 2017 Science 358 1155 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|