Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 037402    DOI: 10.1088/0256-307X/40/3/037402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$
Wenjing Liu1,2, Heming Zha1,2, Gen-Da Gu3, Xiaoping Shen4, Mao Ye1,2*, and Shan Qiao1,2,5*
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
4State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
5School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Wenjing Liu, Heming Zha, Gen-Da Gu et al  2023 Chin. Phys. Lett. 40 037402
Download: PDF(4114KB)   PDF(mobile)(4118KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Seeking new order parameters and the related broken symmetry and studying their relationship with phase transition have been important topics in condensed matter physics. Here, by using spin- and angle-resolved photoemission spectroscopy, we confirm the helical spin texture caused by spin-layer locking in the nodal region in the cuprate superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ and discover the anisotropy of spin polarizations at nodes along $\varGamma$–$X$ and $\varGamma$–$Y$ directions. The breaking of $C_{4}$ rotational symmetry in electronic spin texture may give deeper insights into understanding the ground state of cuprate superconductors.
Received: 23 November 2022      Editors' Suggestion Published: 28 February 2023
PACS:  74.72.-h (Cuprate superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/037402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/037402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenjing Liu
Heming Zha
Gen-Da Gu
Xiaoping Shen
Mao Ye
and Shan Qiao
[1] Ando Y, Segawa K, Komiya S et al. 2002 Phys. Rev. Lett. 88 137005
[2] Lawler M J, Fujita K, Lee J et al. 2010 Nature 466 347
[3] Coldea1 A I and Watson M D 2018 Annu. Rev. Condens. Matter Phys. 9 125
[4] Wen C H P et al. 2016 Nat. Commun. 7 10840
[5] Nakayama K, Sato T, Dobashi T et al. 2006 Phys. Rev. B 74 054505
[6] Mans A, Santoso I, Huang Y, Siu W K et al. 2006 Phys. Rev. Lett. 96 107007
[7] Koitzsch A, Borisenko S V, Kordyuk A A et al. 2004 Phys. Rev. B 69 220505(R)
[8] Singh D J and Pickett W E 1995 Phys. Rev. B 51 3128
[9] Aebi P, Osterwalder J, Schwaller P et al. 1994 Phys. Rev. Lett. 72 2757
[10] Ding H, Bellman A F, Campuzano J C et al. 1996 Phys. Rev. Lett. 76 1533
[11] Mesot J, Norman M R, Ding H et al. 1999 Phys. Rev. Lett. 82 2618
[12] Liu J, Zhao L, Gao Q et al. 2019 Chin. Phys. B 28 077403
[13] Gao Q, Yan H, Liu J et al. 2020 Phys. Rev. B 101 014513
[14] Osterwalder J, Aebi P, Schwaller P et al. 1995 Appl. Phys. A 60 247
[15] Gotlieb K, Lin C Y, Serbyn M et al. 2018 Science 362 1271
[16] Zhang X W, Liu Q H, Luo J W et al. 2014 Nat. Phys. 10 387
[17] Ji F H, Shi T, Ye M et al. 2016 Phys. Rev. Lett. 116 177601
[18] Koshibae W, Ohta Y, and Maekawa S 1993 Phys. Rev. B 47 3391
[19] Tranquada J M, Sternlieb B, Axe J D et al. 1995 Nature 375 561
[20] Manzke R, Müller R, Janowitz C, Schneider M, Krapf A, and Dwelk H 2001 Phys. Rev. B 63 100504
[21] Yaji K, Kuoda K, Toyohisa S et al. 2017 Nat. Commun. 8 14588
[22] Fong H F, Bourges P, Sidis Y et al. 1999 Nature 398 588
[23] Zheng B X, Chung C M, Corboz P et al. 2017 Science 358 1155
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 037402
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 037402
[3] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 037402
[4] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 037402
[5] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 037402
[6] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 037402
[7] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 037402
[8] Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu, Xing-Jiang Zhou. A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method[J]. Chin. Phys. Lett., 2016, 33(06): 037402
[9] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 037402
[10] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 037402
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 037402
[12] XIA Feng-Jin, WU Hao, FU Yue-Ju, XU Bo, YUAN Jie, ZHU Bei-Yi, QIU Xiang-Gang, CAO Li-Xin, LI Jun-Jie, JIN Ai-Zi, WANG Yu-Mei, LI Fang-Hua, LIU Bao-Ting, XIE Zhong, ZHAO Bai-Ru. A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides[J]. Chin. Phys. Lett., 2012, 29(10): 037402
[13] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 037402
[14] Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. Chin. Phys. Lett., 2010, 27(8): 037402
[15] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 037402
Viewed
Full text


Abstract