Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 027501    DOI: 10.1088/0256-307X/40/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Framework for Contrastive Learning Phases of Matter Based on Visual Representations
Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He*, and Zhong-Yi Lu*
Department of Physics, Renmin University of China, Beijing 100872, China
Cite this article:   
Xiao-Qi Han, Sheng-Song Xu, Zhen Feng et al  2023 Chin. Phys. Lett. 40 027501
Download: PDF(3107KB)   PDF(mobile)(3115KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A main task in condensed-matter physics is to recognize, classify, and characterize phases of matter and the corresponding phase transitions, for which machine learning provides a new class of research tools due to the remarkable development in computing power and algorithms. Despite much exploration in this new field, usually different methods and techniques are needed for different scenarios. Here, we present SimCLP: a simple framework for contrastive learning phases of matter, which is inspired by the recent development in contrastive learning of visual representations. We demonstrate the success of this framework on several representative systems, including non-interacting and quantum many-body, conventional and topological. SimCLP is flexible and free of usual burdens such as manual feature engineering and prior knowledge. The only prerequisite is to prepare enough state configurations. Furthermore, it can generate representation vectors and labels and hence help tackle other problems. SimCLP therefore paves an alternative way to the development of a generic tool for identifying unexplored phase transitions.
Received: 07 November 2022      Published: 17 January 2023
PACS:  05.70.Fh (Phase transitions: general studies)  
  75.40.Mg (Numerical simulation studies)  
  02.70.Uu (Applications of Monte Carlo methods)  
  64.70.Tg (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/027501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Qi Han
Sheng-Song Xu
Zhen Feng
Rong-Qiang He
and Zhong-Yi Lu
[1] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press)
[2] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[3] Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001
[4] Carrasquilla J and Torlai G 2021 PRX Quantum 2 040201
[5] Carrasquilla J 2020 Adv. Phys.: X 5 1797528
[6] Uvarov A V, Kardashin A S, and Biamonte J D 2020 Phys. Rev. A 102 012415
[7] Bai X D, Zhao J, Han Y Y, Zhao J C, and Wang J G 2021 Phys. Rev. B 103 134203
[8] Bohrdt A, Kim S, Lukin A, Rispoli M, Schittko R, Knap M, Greiner M, and Léonard J 2021 Phys. Rev. Lett. 127 150504
[9] Hsu Y T, Li X, Deng D L, and Sarma S D 2018 Phys. Rev. Lett. 121 245701
[10] Zhang H L, Jiang S, Wang X, Zhang W G, Huang X Z, Ouyang X L, Yu Y F, Liu Y Q, Deng D L, and Duan L M 2022 Nat. Commun. 13 4993
[11] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[12] Ch'ng K, Carrasquilla J, Melko R G, and Khatami E 2017 Phys. Rev. X 7 031038
[13] Beach M J S, Golubeva A, and Melko R G 2018 Phys. Rev. B 97 045207
[14] Venderley J, Khemani V, and Kim E A 2018 Phys. Rev. Lett. 120 257204
[15] Deng D L, Li X, and Sarma S D 2017 Phys. Rev. B 96 195145
[16] Sancho-Lorente T, Román-Roche J, and Zueco D 2021 arXiv:2109.02686 [quant-ph]
[17] Driskell G, Lederer S, Bauer C, Trebst S, and Kim E A 2021 Phys. Rev. Lett. 127 046601
[18] Havlı́ček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M, and Gambetta J M 2019 Nature 567 209
[19] Schindler F, Regnault N, and Neupert T 2017 Phys. Rev. B 95 245134
[20] Zhang W Z, Liu J Y, and Wei T C 2019 Phys. Rev. E 99 032142
[21] Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. Lett. 120 066401
[22] Miyajima Y, Murata Y, Tanaka Y, and Mochizuki M 2021 Phys. Rev. B 104 075114
[23] Théveniaut H and Alet F 2019 Phys. Rev. B 100 224202
[24] van Nieuwenburg E P L, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435
[25] Wang L 2016 Phys. Rev. B 94 195105
[26] Kharkov Y A, Sotskov V E, Karazeev A A, Kiktenko E O, and Fedorov A K 2020 Phys. Rev. B 101 064406
[27] Wetzel S J 2017 Phys. Rev. E 96 022140
[28] Hu W J, Singh R R P, and Scalettar R T 2017 Phys. Rev. E 95 062122
[29] Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790
[30] Huembeli P, Dauphin A, and Wittek P 2018 Phys. Rev. B 97 134109
[31] Broecker P, Assaad F F, and Trebst S 2017 arXiv: 1707.00663 [cond-mat.str-el]
[32] Balabanov O and Granath M 2020 Phys. Rev. Res. 2 013354
[33] Canabarro A, Fanchini F F, Malvezzi A L, Pereira R, and Chaves R 2019 Phys. Rev. B 100 045129
[34] Greplova E, Valenti A, Boschung G, Schäfer F, Lörch N, and Huber S D 2020 New J. Phys. 22 045003
[35] Wang J L, Zhang W Z, Hua T, and Wei T C 2021 Phys. Rev. Res. 3 013074
[36] Wang R, Ma Y G, Wada R, Chen L W, He W B, Liu H L, and Sun K J 2020 Phys. Rev. Res. 2 043202
[37] Che Y M, Gneiting C, Liu T, and Nori F 2020 Phys. Rev. B 102 134213
[38] Shen J M, Li W, Deng S F, and Zhang T 2021 Phys. Rev. E 103 052140
[39] Ni Q, Tang M, Liu Y, and Lai Y C 2019 Phys. Rev. E 100 052312
[40] Lee S S and Kim B J 2019 Phys. Rev. E 99 043308
[41] Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401
[42] Tibaldi S, Magnifico G, Vodola D, and Ercolessi E 2022 arXiv:2202.09281 [cond-mat.supr-con]
[43] Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402
[44]Chen T, Kornblith S, Norouzi M, Hinton G, and I 2020 Proc. Machine Learning Res. 119 1597
[45] Wang Y, Wang J, Cao Z, and Farimani A B, and 2022 Nat. Mach. Intell. 4 297
[46] Yang Z, Song J, Yang M, Yao L, Zhang J, Shi H, Ji X, Deng Y, and Wang X 2021 Anal. Chem. 93 16947
[47] Liu C Y and Wang D W 2021 Phys. Rev. B 103 205107
[48] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, and Jackel L D 1989 Neural Comput. 1 541
[49] Onsager L 1944 Phys. Rev. 65 117
[50] Mishra A, Ma M, Zhang F C, Guertler S, Tang L H, and Wan S 2004 Phys. Rev. Lett. 93 207201
[51] Wenzel S, Janke W, and Läuchli A M 2010 Phys. Rev. E 81 066702
[52] Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 046701
[53] Heeger A J, Kivelson S, Schrieffer J R, and Su W P 1988 Rev. Mod. Phys. 60 781
[54]Shen S Q 2017 Topological Phases in One Dimension, in Topological Insulators (Berlin: Springer) pp 81–90
[55] Carleo G and Troyer M 2017 Science 355 602
[56] Glasser I, Pancotti N, August M, Rodriguez I D, and Cirac J I 2018 Phys. Rev. X 8 011006
[57] Cai Z and Liu J 2018 Phys. Rev. B 97 035116
[58] Bachtis D, Aarts G, and Lucini B 2021 Phys. Rev. Res. 3 013134
[59] Torlai G and Melko R G 2017 Phys. Rev. Lett. 119 030501
[60] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, and Carleo G 2018 Nat. Phys. 14 447
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 027501
[2] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 027501
[3] Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang. A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect[J]. Chin. Phys. Lett., 2019, 36(7): 027501
[4] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 027501
[5] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 027501
[6] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 027501
[7] GE Hong-Xia, MENG Xiang-Pei, ZHU Ke-Qiang, CHENG Rong-Jun. The Stability Analysis for an Extended Car Following Model Based on Control Theory[J]. Chin. Phys. Lett., 2014, 31(08): 027501
[8] DENG Yi-Bo, GU Qiang. Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice[J]. Chin. Phys. Lett., 2014, 31(2): 027501
[9] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 027501
[10] WANG Si-Ying, DUAN Wen-Gang, YIN Xie-Zhen. Transition Mode of Two Parallel Flags in Uniform Flow[J]. Chin. Phys. Lett., 2013, 30(11): 027501
[11] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue. Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice[J]. Chin. Phys. Lett., 2012, 29(12): 027501
[12] HU Mao-Bin, Henry Y.K. Lau, LING Xiang, JIANG Rui. Pheromone Static Routing Strategy for Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 027501
[13] LIU You-Jun, ZHANG Hai-Lin, HE Li. Cooperative Car-Following Model of Traffic Flow and Numerical Simulation[J]. Chin. Phys. Lett., 2012, 29(10): 027501
[14] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 027501
[15] YU Wing-Chi, WANG Li-Gang, GU Shi-Jian, and LIN Hai-Qing. Scaling of the Leading Response in Linear Quench Dynamics in the Quantum Ising Model[J]. Chin. Phys. Lett., 2012, 29(8): 027501
Viewed
Full text


Abstract