Chin. Phys. Lett.  2023, Vol. 40 Issue (2): 027401    DOI: 10.1088/0256-307X/40/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors
Xiaolei Yi1,2†, Xiangzhuo Xing1,3†*, Yan Meng1,4, Nan Zhou1,5, Chunlei Wang2, Yue Sun1*, and Zhixiang Shi1*
1School of Physics, Southeast University, Nanjing 211189, China
2College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
3School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
4School of Physical Science and Intelligent Engineering, Jining University, Qufu 273155, China
5Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Cite this article:   
Xiaolei Yi, Xiangzhuo Xing, Yan Meng et al  2023 Chin. Phys. Lett. 40 027401
Download: PDF(6743KB)   PDF(mobile)(6758KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The second magnetization peak (SMP) appears in most superconductors and is crucial for the understanding of vortex physics as well as the application. Although it is well known that the SMP is related to the type and quantity of disorder/defects, the mechanism has not been universally understood. We selected three stoichiometric superconducting RbCa$_2$Fe$_4$As$_4$F$_2$ single crystals with identical superconducting critical temperature $T_{\rm c} \sim 31$ K and similar self-field critical current density $J_{\rm c}$, but with different amounts of disorder/defects, to study the SMP effect. It is found that only the sample S2 with moderate disorder/defects shows significant SMP effect. The evolution of the normalized pinning force density $f_{\rm p}$ demonstrates that the dominant pinning mechanism changes from the weak pinning at low temperatures to strong pinning at high temperatures. The microstructure study for sample S2 reveals some expanded Ca$_2$F$_2$ layers and dislocation defects in RbFe$_2$As$_2$ layers. The normalized magnetic relaxation results indicate that the SMP is strongly associated with the elastic to plastic (E-P) vortex transition. As temperature increases, the SMP gradually evolves into a step-like shape and then becomes a sharp peak near the irreversibility field similar to what is usually observed in low-temperature superconductors. Our findings connect the low field SMP of high-temperature superconductors and the high field peak of low-temperature superconductors, revealing the possible universal origin related to the E-P phase transition.
Received: 26 December 2022      Editors' Suggestion Published: 04 February 2023
PACS:  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.25.Sv (Critical currents)  
  74.70.-b (Superconducting materials other than cuprates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/2/027401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaolei Yi
Xiangzhuo Xing
Yan Meng
Nan Zhou
Chunlei Wang
Yue Sun
and Zhixiang Shi
[1] Blatter G, Feigel'man M V, Geshkenbein B B, Larkin A I, and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[2] Yeshurun Y, Malozemoff A P, and Shaulov A 1996 Rev. Mod. Phys. 68 911
[3] Pippard A B 1969 Philos. Mag. 19 217
[4] Larkin A I and Ovchinnikov Y N 1979 J. Low Temp. Phys. 34 409
[5] Rosenstein B, Shapiro B Y, Shapiro I, Bruckental Y, Shaulov A, and Yeshurun Y 2005 Phys. Rev. B 72 144512
[6] Pramanik A K, Harnagea L, Nacke C, Wolter A U B, Wurmehl S, Kataev V, and Buchner B 2011 Phys. Rev. B 83 094502
[7] Kopeliansky R, Shaulov A, Shapiro B Y, Yeshurun Y, Rosenstein B, Tu J J, Li L J, Cao G H, and Xu Z A 2010 Phys. Rev. B 81 092504
[8] Abulafia Y, Shaulov A, Wolfus Y, Prozorov R, Burlachkov L, Yeshurun Y, Majer D, Zeldov E, Wuhl H, Geshkenbein V B, and Vinokur V M 1996 Phys. Rev. Lett. 77 1596
[9] Prozorov R, Ni N, Tanatar M A, Kogan V G, Gordon R T, Martin C, Blomberg E C, Prommapan P, Yan J Q, Bud'ko S L, and Canfield P C 2008 Phys. Rev. B 78 224506
[10] Nishizaki T, Naito T, Okayasu S, Iwase A, and Kobayashi N 2000 Phys. Rev. B 61 3649
[11] Ishida S, Iyo A, Ogino H, Eisaki H, Takeshita N, Kawashima K, Yanagisawa K, Kobayashi Y, Kimoto K, Abe H, Imai M, Shimoyama J I, and Eisterer M 2019 npj Quantum Mater. 4 27
[12] Pan Y Q, Zhou W, Feng J J, Yi X L, Xu C Q, Wang M H, Zhou N, and Shi Z X 2021 Supercond. Sci. Technol. 35 025007
[13] Llovo I F, Sonora D, Mosqueira J, Salem-Sugui Jr S, Sundar S, Alvarenga A D, Xie T, Liu C, Li S L, and Luo H Q 2021 Supercond. Sci. Technol. 34 115010
[14] Eley S, Willa R, Chan M K, Bauer E D, and Civale L 2020 Sci. Rep. 10 10239
[15] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[16] Luo X Q and Chen X H 2015 Sci. Chin. Mater. 58 77
[17] van der Beek C J, Konczykowski M, Kasahara S, Terashima T, Okazaki R, Shibauchi T, and Matsuda Y 2010 Phys. Rev. Lett. 105 267002
[18] van der Beek C J, Konczykowski M, Abal'oshev A, Abal'osheva I, Gierlowski P, Lewandowski S J, Indenbom M V, and Barbanera S 2002 Phys. Rev. B 66 024523
[19] Feigel'man M V, Geshkenbein V B, Larkin A I, and Vinokur V M 1989 Phys. Rev. Lett. 63 2303
[20] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[21] Cava R J, Batlogg B, van Dover R B, Krajewski J J, Waszczak J V, Fleming R M, Peck W F, Rupp L W, Marsh P, James A C W P, and Schneemeyer L F 1990 Nature 345 602
[22] Tarascon J M, Page Y L, Barboux P, Bagley B G, Greene L H, McKinnon W R, Hull G W, Giroud M, and Hwang D M 1988 Phys. Rev. B 37 9382
[23] Pyon S, Kobayashi Y, Takahashi A, Li W, Wang T, Mu G, Ichinose A, Kambara T, Yoshida A, and Tamegai T 2020 Phys. Rev. Mater. 4 104801
[24] Yi X L, Li M, Xing X Z, Meng Y, Zhao C Y, and Shi Z X 2020 New J. Phys. 22 073007
[25] Hong W S, Song L X, Liu B, Li Z Z, Zeng Z Y, Li Y, Wu D S, Sui Q T, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J P, Zhao L, Zhou X, Qiu X, Li S, and Luo H Q 2020 Phys. Rev. Lett. 125 117002
[26] Wang T, Chu J, Jin H, Feng J, Wang L, Song Y, Zhang C, Xu X, Li W, Li Z, Hu T, Jiang D, Peng W, Liu X, and Mu G 2019 J. Phys. Chem. C 123 13925
[27] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z, and Cao G H 2019 Phys. Rev. B 99 144501
[28] Xing X Z, Yi X L, Li M, Meng Y, Mu G, Ge J Y, and Shi Z X 2020 Supercond. Sci. Technol. 33 114005
[29] Bean C P 1964 Rev. Mod. Phys. 36 31
[30] Wang Z C, He C Y, Tang Z T, Wu S Q, and Cao G H 2017 Sci. Chin. Mater. 60 83
[31] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, and Cao G H 2017 Chem. Mater. 29 1805
[32] Ovchinnikov Y N and Ivlev B I 1991 Phys. Rev. B 43 8024
[33] Haberkorn N, Kim J, Suarez S, Lee J H, and Moon S H 2015 Supercond. Sci. Technol. 28 125007
[34] Haberkorn N, Xu M, Meier W R, Schmidt J, Bud'ko S L, and Canfield P C 2019 Phys. Rev. B 100 064524
[35] Dew-Hughes D 1974 Philos. Mag. 30 293
[36] Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, and Murakami M 1998 Phys. Rev. B 58 2863
[37] Yang H, Luo H, Wang Z, and Wen H H 2008 Appl. Phys. Lett. 93 142506
[38] Zhou W, Xing X, Wu W, Zhao H, and Shi Z 2016 Sci. Rep. 6 22278
[39] Sun D L, Liu Y, and Lin C T 2009 Phys. Rev. B 80 144515
[40] Van Gennep D, Hassan A, Luo H, and Abdel-Hafiez M 2020 Phys. Rev. B 101 235163
[41] Shahbazi M, Wang X L, Choi K Y, and Dou S X 2013 Appl. Phys. Lett. 103 032605
[42] Tao J, Deng Q, Yang H, Wang Z, Zhu X, and Wen H H 2015 Phys. Rev. B 91 214516
[43] Kokubo N, Kadowaki K, and Takita K 2005 Phys. Rev. Lett. 95 177005
[44] Jiao Y J, Cheng W, Deng Q, Yang H, and Wen H H 2018 Physica C 545 43
[45] Nishizaki T, Naito T, and Kobayashi N 1998 Phys. Rev. B 58 11169
[46] Wang C L, He T, Han Q Q, Fan C F, Tang Q B, Chen D, Lei Q K, Sun S J, Li Y B, and Yu B H 2021 Supercond. Sci. Technol. 34 055001
[47] Ichinose A, Pyon S, Tamegai T, and Ishida S 2021 Supercond. Sci. Technol. 34 034003
[48] Pyon S, Takahashi A, Veshchunov I, Tamegai T, Ishida S, Iyo A, Eisaki H, Imai M, Abe H, Terashima T, and Ichinose A 2019 Phys. Rev. B 99 104506
[49] Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C, and Coldea A I 2018 Phys. Rev. Mater. 2 074802
[50] Sun Y, Pyon S, Tamegai T, Kobayashi R, Watashige T, Kasahara S, Matsuda Y, and Shibauchi T 2015 Phys. Rev. B 92 144509
[51] Bonura M, Giannini E, Viennois R, and Senatore C 2012 Phys. Rev. B 85 134532
[52] Salem-Sugui S, Ghivelder L, Alvarenga A D, Cohen L F, Yates K A, Morrison K, Pimentel J L, Luo H, Wang Z, and Wen H H 2010 Phys. Rev. B 82 054513
[53] Polichetti M, Galluzzi A, Buchkov K, Tomov V, Nazarova E, Leo A, Grimaldi G, and Pace S 2021 Sci. Rep. 11 7247
[54] Yang H, Ren C, Shan L, and Wen H H 2008 Phys. Rev. B 78 092504
[55] Shen B, Cheng P, Wang Z, Fang L, Ren C, Shan L, and Wen H H 2010 Phys. Rev. B 81 014503
[56] Sun Y, Taen T, Tsuchiya Y, Pyon S, Shi Z X, and Tamegai T 2013 Europhys. Lett. 103 57013
[57] Pramanik A K, Harnagea L, Singh S, Aswartham S, Behr G, Wurmehl S, Hess C, Klingeler R, and Buchner B 2010 Phys. Rev. B 82 014503
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 027401
Viewed
Full text


Abstract