VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations" /> VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations" /> VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations" />
Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 127101    DOI: 10.1088/0256-307X/40/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations
Sheng Zhang1,2†, Haohao Sheng1,2†, Zhi-Da Song3,4,5*, Chenhao Liang1,2, Yi Jiang1,2, Song Sun1,2, Quansheng Wu1,2, Hongming Weng1,2, Zhong Fang1,2, Xi Dai6, and Zhijun Wang1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
4Hefei National Laboratory, Hefei 230088, China
5Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
6Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
Cite this article:   
Sheng Zhang, Haohao Sheng, Zhi-Da Song et al  2023 Chin. Phys. Lett. 40 127101
Download: PDF(3467KB)   PDF(mobile)(3919KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The $k\!\cdot\! p$ method is significant in condensed matter physics for the compact and analytical Hamiltonian. In the presence of magnetic field, it is described by the effective Zeeman's coupling Hamiltonian with Landé $g$-factors. Here, we develop an open-source package VASP2KP (including two parts: vasp2mat and mat2kp) to compute $k\!\cdot\! p$ parameters and Landé $g$-factors directly from the wavefunctions provided by the density functional theory (DFT) as implemented in Vienna ab initio Simulation Package (VASP). First, we develop a VASP patch vasp2mat to compute matrix representations of the generalized momentum operator $\hat{\boldsymbol \pi}=\hat{\boldsymbol p}+\frac{1}{2mc^2}[\hat{{\boldsymbol s}}\times\nabla V({\boldsymbol r})]$, spin operator $\hat{\boldsymbol s}$, time reversal operator $\hat{T}$, and crystalline symmetry operators $\hat{R}$ on the DFT wavefunctions. Second, we develop a python code mat2kp to obtain the unitary transformation $U$ that rotates the degenerate DFT basis towards the standard basis, and then automatically compute the $k\!\cdot\! p$ parameters and $g$-factors. The theory and the methodology behind VASP2KP are described in detail. The matrix elements of the operators are derived comprehensively and computed correctly within the projector augmented wave method. We apply this package to some materials, e.g., Bi$_2$Se$_3$, Na$_3$Bi, Te, InAs and 1H-TMD monolayers. The obtained effective model's dispersions are in good agreement with the DFT data around the specific wave vector, and the $g$-factors are consistent with experimental data. The VASP2KP package is available at https://github.com/zjwang11/VASP2KP.
Received: 07 November 2023      Express Letter Published: 13 December 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/127101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/127101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sheng Zhang
Haohao Sheng
Zhi-Da Song
Chenhao Liang
Yi Jiang
Song Sun
Quansheng Wu
Hongming Weng
Zhong Fang
Xi Dai
and Zhijun Wang
[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[4] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[5] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[6] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901
[7] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, and Payne M C 2005 Z. Kristallogr. 220 567
[8] Gonze X, Amadon B, Antonius G, Arnardi F, Baguet L, Beuken J M, Bieder J, Bottin F, Bouchet J, Bousquet E, Brouwer N, Bruneval F, Brunin G, Cavignac T, Charraud J B, Chen W, Côté M, Cottenier S, Denier J, Geneste G, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, He X, Helbig N, Holzwarth N, Jia Y, Jollet F, Lafargue-Dit-Hauret W, Lejaeghere K, Marques M A L, Martin A, Martins C, Miranda H P C, Naccarato F, Persson K, Petretto G, Planes V, Pouillon Y, Prokhorenko S, Ricci F, Rignanese G M, Romero A H, Schmitt M M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Zérah G, and Zwanziger J W 2020 Comput. Phys. Commun. 248 107042
[9] Romero A H, Allan D C, Amadon B, Antonius G, Applencourt T, Baguet L, Bieder J, Bottin F C, Bouchet J, Bousquet E, Bruneval F, Brunin G, Caliste D, Côté M, Denier J, Dreyer C, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, Jollet F C, Jomard G, Martin A, Miranda H P C, Naccarato F, Petretto G, Pike N A, Planes V, Prokhorenko S, Rangel T, Ricci F, Rignanese G M, Royo M, Stengel M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Wiktor J, Zwanziger J W, and Gonze X 2020 J. Chem. Phys. 152 124102
[10] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[11] García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W Z, and Junquera J 2020 J. Chem. Phys. 152 204108
[12] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101
[13] Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye M Y, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz J J, Köhler C, Kowalczyk T, Kubař T, Lee I S, Lutsker V, Maurer R J, Min S K, Mitchell I, Negre C, Niehaus T A, Niklasson A M N, Page A J, Pecchia A, Penazzi G, Persson M P, Řezáč J, Sánchez C G, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu V W Z, and Frauenheim T 2020 J. Chem. Phys. 152 124101
[14] Luque A, Panchak A, Mellor A, Vlasov A, Martí A, and Andreev V 2015 Physica B 456 82
[15] Gresch D, Wu Q, Winkler G W, and Soluyanov A A 2017 New J. Phys. 19 035001
[16] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[17] Marquardt O, Geelhaar L, and Brandt O 2015 Nano Lett. 15 4289
[18] Kane E O 1957 J. Phys. Chem. Solids 1 249
[19] Zhang H J and Zhang S C 2013 Phys. Status Solidi RRL 7 72
[20] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438
[21] Fu L 2009 Phys. Rev. Lett. 103 266801
[22] Xu G, Weng H M, Wang Z J, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806
[23] Faria J P E, Xu G F, Lee J, Gerhardt N C, Sipahi G M, and Žutić I 2015 Phys. Rev. B 92 075311
[24] Holub M and Jonker B T 2011 Phys. Rev. B 83 125309
[25] Marquardt O 2021 Comput. Mater. Sci. 194 110318
[26] Faria J P E, Kurpas M, Gmitra M, and Fabian J 2019 Phys. Rev. B 100 115203
[27] Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D, and Fal'ko V 2015 2D Mater. 2 049501
[28] Deilmann T, Krüger P, and Rohlfing M 2020 Phys. Rev. Lett. 124 226402
[29] Faria J P and Sipahi G 2012 J. Appl. Phys. 112 103716
[30] Xuan F Y and Quek S Y 2020 Phys. Rev. Res. 2 033256
[31] Climente J I, Segarra C, Rajadell F, and Planelles J 2016 J. Appl. Phys. 119 125705
[32] Lucignano P, Giuliano D, and Tagliacozzo A 2007 Phys. Rev. B 76 045324
[33] Zamani A, Setareh F, Azargoshasb T, and Niknam E 2017 Superlattices Microstruct. 110 243
[34] León-González J C, Toscano-Negrette R G, Morales A L, Vinasco J A, Yücel M B, Sari H, Kasapoglu E, Sakiroglu S, Mora-Ramos M E, Restrepo R L, and Duque C A 2023 Nanomaterials 13 1461
[35] Zamani A and Rezaei G 2018 Superlattices Microstruct. 124 145
[36] Pryor C E and Flatté M E 2006 Phys. Rev. Lett. 96 026804
[37] Gharaati A 2017 Solid State Commun. 258 17
[38] Kotlyar R, Reinecke T L, Bayer M, and Forchel A 2001 Phys. Rev. B 63 085310
[39] Kiselev A A, Ivchenko E L, and Rössler U 1998 Phys. Rev. B 58 16353
[40] Winkler G W, Varjas D, Skolasinski R, Soluyanov A A, Troyer M, and Wimmer M 2017 Phys. Rev. Lett. 119 037701
[41] Toloza S M A, Ferreira D S A, de Andrada E S E A, and La R G C 2012 Phys. Rev. B 86 195302
[42] Alegre T P M, Hernández F G G, Pereira A L C, and Medeiros-Ribeiro G 2006 Phys. Rev. Lett. 97 236402
[43] Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C, and Yu D P 2015 Nanoscale 7 16687
[44] Liu Z H, Entin-Wohlman O, Aharony A, You J Q, and Xu H Q 2021 Phys. Rev. B 104 085302
[45] Xin J and Reid S A 2002 J. Chem. Phys. 116 525
[46] Semenov M, Yurchenko S N, and Tennyson J 2016 J. Mol. Spectrosc. 330 57
[47] Fischer C F and Jönsson P 2001 J. Mol. Struct.: THEOCHEM 537 55
[48] Gao J C, Wu Q S, Persson C, and Wang Z J 2021 Comput. Phys. Commun. 261 107760
[49] Jiang Y, Fang Z, and Fang C 2021 Chin. Phys. Lett. 38 077104
[50] Song Z, Sun S, Xu Y, Nie S, Weng H, Fang Z, and Dai X 2021 First Principle Calculation of the Effective Zeeman's Couplings in Topological Materials (Singerpore: World Scientific) p 263
[51] Zhang R, Deng J, Sun Y, Fang Z, Guo Z, and Wang Z 2023 Phys. Rev. Res. 5 023142 The IR2PW code is available at https://github.com/zjwang11/IR2PW
[52] Iraola M, Mañes J L, Bradlyn B, Horton M K, Neupert T, Vergniory M G, and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226
[53] Cassiano J A V V, Araújo A L, Junior P E F, and Ferreira G J 2023 arXiv:2306.08554 [cond-mat.mes-hall]
[54] Blöchl P E 1994 Phys. Rev. B 50 17953
[55] Blöchl P E, Först C J, and Schimpl J 2003 Bull. Mater. Sci. 26 33
[56] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206
[57]Zhang S, S H, Song Z D, Liang C, and Wang Z 2023 VASP2KP
[58] Köhler H and Wöchner E 1975 Phys. Status Solidi B 67 665
[59] Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, and Samuelson L 2005 Phys. Rev. B 72 201307
[60] Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S, and Högele A 2020 Nat. Commun. 11 4539
Related articles from Frontiers Journals
[1] Yao Wang, Zhenzhen Lei, Jinsen Zhang, Xinyong Tao, Chenqiang Hua, and Yunhao Lu. Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium[J]. Chin. Phys. Lett., 2023, 40(11): 127101
[2] Guanghui Cai, Yutao Jiang, Hui Zhou, Ze Yu, Kun Jiang, Youguo Shi, Sheng Meng, and Miao Liu. Energy Landscape and Phase Competition of CsV$_{3}$Sb$_{5}$, CsV$_{6}$Sb$_{6}$ and TbMn$_{6}$Sn$_{6}$-Type Kagome Materials[J]. Chin. Phys. Lett., 2023, 40(11): 127101
[3] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 127101
[4] Jing-Yang You, Xue-Juan Dong, Bo Gu, and Gang Su. Possible Room-Temperature Ferromagnetic Semiconductors[J]. Chin. Phys. Lett., 2023, 40(6): 127101
[5] Jierui Huang, Tan Zhang, Sheng Xu, Zhicheng Rao, Jiajun Li, Junde Liu, Shunye Gao, Yaobo Huang, Wenliang Zhu, Tianlong Xia, Hongming Weng, and Tian Qian. Electronic Structure of the Weak Topological Insulator Candidate Zintl Ba$_{3}$Cd$_{2}$Sb$_{4}$[J]. Chin. Phys. Lett., 2023, 40(4): 127101
[6] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 127101
[7] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 127101
[8] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 127101
[9] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 127101
[10] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 127101
[11] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 127101
[12] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 127101
[13] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127101
[14] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 127101
[15] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127101
Viewed
Full text


Abstract