CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations |
Sheng Zhang1,2†, Haohao Sheng1,2†, Zhi-Da Song3,4,5*, Chenhao Liang1,2, Yi Jiang1,2, Song Sun1,2, Quansheng Wu1,2, Hongming Weng1,2, Zhong Fang1,2, Xi Dai6, and Zhijun Wang1,2* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 4Hefei National Laboratory, Hefei 230088, China 5Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 6Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
|
|
Cite this article: |
Sheng Zhang, Haohao Sheng, Zhi-Da Song et al 2023 Chin. Phys. Lett. 40 127101 |
|
|
Abstract The $k\!\cdot\! p$ method is significant in condensed matter physics for the compact and analytical Hamiltonian. In the presence of magnetic field, it is described by the effective Zeeman's coupling Hamiltonian with Landé $g$-factors. Here, we develop an open-source package VASP2KP (including two parts: vasp2mat and mat2kp) to compute $k\!\cdot\! p$ parameters and Landé $g$-factors directly from the wavefunctions provided by the density functional theory (DFT) as implemented in Vienna ab initio Simulation Package (VASP). First, we develop a VASP patch vasp2mat to compute matrix representations of the generalized momentum operator $\hat{\boldsymbol \pi}=\hat{\boldsymbol p}+\frac{1}{2mc^2}[\hat{{\boldsymbol s}}\times\nabla V({\boldsymbol r})]$, spin operator $\hat{\boldsymbol s}$, time reversal operator $\hat{T}$, and crystalline symmetry operators $\hat{R}$ on the DFT wavefunctions. Second, we develop a python code mat2kp to obtain the unitary transformation $U$ that rotates the degenerate DFT basis towards the standard basis, and then automatically compute the $k\!\cdot\! p$ parameters and $g$-factors. The theory and the methodology behind VASP2KP are described in detail. The matrix elements of the operators are derived comprehensively and computed correctly within the projector augmented wave method. We apply this package to some materials, e.g., Bi$_2$Se$_3$, Na$_3$Bi, Te, InAs and 1H-TMD monolayers. The obtained effective model's dispersions are in good agreement with the DFT data around the specific wave vector, and the $g$-factors are consistent with experimental data. The VASP2KP package is available at https://github.com/zjwang11/VASP2KP.
|
|
Received: 07 November 2023
Express Letter
Published: 13 December 2023
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
|
|
|
[1] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 |
[2] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[3] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[4] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[5] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 |
[6] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 |
[7] | Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, and Payne M C 2005 Z. Kristallogr. 220 567 |
[8] | Gonze X, Amadon B, Antonius G, Arnardi F, Baguet L, Beuken J M, Bieder J, Bottin F, Bouchet J, Bousquet E, Brouwer N, Bruneval F, Brunin G, Cavignac T, Charraud J B, Chen W, Côté M, Cottenier S, Denier J, Geneste G, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, He X, Helbig N, Holzwarth N, Jia Y, Jollet F, Lafargue-Dit-Hauret W, Lejaeghere K, Marques M A L, Martin A, Martins C, Miranda H P C, Naccarato F, Persson K, Petretto G, Planes V, Pouillon Y, Prokhorenko S, Ricci F, Rignanese G M, Romero A H, Schmitt M M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Zérah G, and Zwanziger J W 2020 Comput. Phys. Commun. 248 107042 |
[9] | Romero A H, Allan D C, Amadon B, Antonius G, Applencourt T, Baguet L, Bieder J, Bottin F C, Bouchet J, Bousquet E, Bruneval F, Brunin G, Caliste D, Côté M, Denier J, Dreyer C, Ghosez P, Giantomassi M, Gillet Y, Gingras O, Hamann D R, Hautier G, Jollet F C, Jomard G, Martin A, Miranda H P C, Naccarato F, Petretto G, Pike N A, Planes V, Prokhorenko S, Rangel T, Ricci F, Rignanese G M, Royo M, Stengel M, Torrent M, van Setten M J, Troeye B V, Verstraete M J, Wiktor J, Zwanziger J W, and Gonze X 2020 J. Chem. Phys. 152 124102 |
[10] | Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 |
[11] | García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W Z, and Junquera J 2020 J. Chem. Phys. 152 204108 |
[12] | Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101 |
[13] | Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye M Y, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz J J, Köhler C, Kowalczyk T, Kubař T, Lee I S, Lutsker V, Maurer R J, Min S K, Mitchell I, Negre C, Niehaus T A, Niklasson A M N, Page A J, Pecchia A, Penazzi G, Persson M P, Řezáč J, Sánchez C G, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu V W Z, and Frauenheim T 2020 J. Chem. Phys. 152 124101 |
[14] | Luque A, Panchak A, Mellor A, Vlasov A, Martí A, and Andreev V 2015 Physica B 456 82 |
[15] | Gresch D, Wu Q, Winkler G W, and Soluyanov A A 2017 New J. Phys. 19 035001 |
[16] | Luttinger J M and Kohn W 1955 Phys. Rev. 97 869 |
[17] | Marquardt O, Geelhaar L, and Brandt O 2015 Nano Lett. 15 4289 |
[18] | Kane E O 1957 J. Phys. Chem. Solids 1 249 |
[19] | Zhang H J and Zhang S C 2013 Phys. Status Solidi RRL 7 72 |
[20] | Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 |
[21] | Fu L 2009 Phys. Rev. Lett. 103 266801 |
[22] | Xu G, Weng H M, Wang Z J, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806 |
[23] | Faria J P E, Xu G F, Lee J, Gerhardt N C, Sipahi G M, and Žutić I 2015 Phys. Rev. B 92 075311 |
[24] | Holub M and Jonker B T 2011 Phys. Rev. B 83 125309 |
[25] | Marquardt O 2021 Comput. Mater. Sci. 194 110318 |
[26] | Faria J P E, Kurpas M, Gmitra M, and Fabian J 2019 Phys. Rev. B 100 115203 |
[27] | Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D, and Fal'ko V 2015 2D Mater. 2 049501 |
[28] | Deilmann T, Krüger P, and Rohlfing M 2020 Phys. Rev. Lett. 124 226402 |
[29] | Faria J P and Sipahi G 2012 J. Appl. Phys. 112 103716 |
[30] | Xuan F Y and Quek S Y 2020 Phys. Rev. Res. 2 033256 |
[31] | Climente J I, Segarra C, Rajadell F, and Planelles J 2016 J. Appl. Phys. 119 125705 |
[32] | Lucignano P, Giuliano D, and Tagliacozzo A 2007 Phys. Rev. B 76 045324 |
[33] | Zamani A, Setareh F, Azargoshasb T, and Niknam E 2017 Superlattices Microstruct. 110 243 |
[34] | León-González J C, Toscano-Negrette R G, Morales A L, Vinasco J A, Yücel M B, Sari H, Kasapoglu E, Sakiroglu S, Mora-Ramos M E, Restrepo R L, and Duque C A 2023 Nanomaterials 13 1461 |
[35] | Zamani A and Rezaei G 2018 Superlattices Microstruct. 124 145 |
[36] | Pryor C E and Flatté M E 2006 Phys. Rev. Lett. 96 026804 |
[37] | Gharaati A 2017 Solid State Commun. 258 17 |
[38] | Kotlyar R, Reinecke T L, Bayer M, and Forchel A 2001 Phys. Rev. B 63 085310 |
[39] | Kiselev A A, Ivchenko E L, and Rössler U 1998 Phys. Rev. B 58 16353 |
[40] | Winkler G W, Varjas D, Skolasinski R, Soluyanov A A, Troyer M, and Wimmer M 2017 Phys. Rev. Lett. 119 037701 |
[41] | Toloza S M A, Ferreira D S A, de Andrada E S E A, and La R G C 2012 Phys. Rev. B 86 195302 |
[42] | Alegre T P M, Hernández F G G, Pereira A L C, and Medeiros-Ribeiro G 2006 Phys. Rev. Lett. 97 236402 |
[43] | Wang L X, Yan Y, Zhang L, Liao Z M, Wu H C, and Yu D P 2015 Nanoscale 7 16687 |
[44] | Liu Z H, Entin-Wohlman O, Aharony A, You J Q, and Xu H Q 2021 Phys. Rev. B 104 085302 |
[45] | Xin J and Reid S A 2002 J. Chem. Phys. 116 525 |
[46] | Semenov M, Yurchenko S N, and Tennyson J 2016 J. Mol. Spectrosc. 330 57 |
[47] | Fischer C F and Jönsson P 2001 J. Mol. Struct.: THEOCHEM 537 55 |
[48] | Gao J C, Wu Q S, Persson C, and Wang Z J 2021 Comput. Phys. Commun. 261 107760 |
[49] | Jiang Y, Fang Z, and Fang C 2021 Chin. Phys. Lett. 38 077104 |
[50] | Song Z, Sun S, Xu Y, Nie S, Weng H, Fang Z, and Dai X 2021 First Principle Calculation of the Effective Zeeman's Couplings in Topological Materials (Singerpore: World Scientific) p 263 |
[51] | Zhang R, Deng J, Sun Y, Fang Z, Guo Z, and Wang Z 2023 Phys. Rev. Res. 5 023142 The IR2PW code is available at https://github.com/zjwang11/IR2PW |
[52] | Iraola M, Mañes J L, Bradlyn B, Horton M K, Neupert T, Vergniory M G, and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226 |
[53] | Cassiano J A V V, Araújo A L, Junior P E F, and Ferreira G J 2023 arXiv:2306.08554 [cond-mat.mes-hall] |
[54] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[55] | Blöchl P E, Först C J, and Schimpl J 2003 Bull. Mater. Sci. 26 33 |
[56] | Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, and Marcus C M 2016 Nature 531 206 |
[57] | Zhang S, S H, Song Z D, Liang C, and Wang Z 2023 VASP2KP |
[58] | Köhler H and Wöchner E 1975 Phys. Status Solidi B 67 665 |
[59] | Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, and Samuelson L 2005 Phys. Rev. B 72 201307 |
[60] | Förste J, Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S, and Högele A 2020 Nat. Commun. 11 4539 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|