CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Unconventional Nonreciprocal Voltage Transition in Ag$_{2}$Te Nanobelts |
Peng-Liang Leng1†, Xiang-Yu Cao1†, Qiang Ma1, Lin-Feng Ai1, Yu-Da Zhang1, Jing-Lei Zhang2, and Fa-Xian Xiu1* |
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
|
|
Cite this article: |
Peng-Liang Leng, Xiang-Yu Cao, Qiang Ma et al 2023 Chin. Phys. Lett. 40 127201 |
|
|
Abstract Nonreciprocal effects are consistently observed in noncentrosymmetric materials due to the intrinsic symmetry breaking and in high-conductivity systems due to the extrinsic thermoelectric effect. Meanwhile, nonreciprocal charge transport is widely utilized as an effective experimental technique for detecting intrinsic unidirectional electrical contributions. Here, we show an unconventional nonreciprocal voltage transition in topological insulator Ag$_{2}$Te nanobelts. The nonreciprocal voltage develops from nearly zero to giant values under the applied current $I_{\rm ac}$ and external magnetic fields, while remaining unchanged under various current $I_{\rm dc}$. This unidirectional electrical contribution is further evidenced by the differential resistance ($dV/dI$) measurements. Furthermore, the transition possesses two-dimensional properties under a tilted magnetic field and occurs when the voltage between two electrodes exceeds a certain value. We propose a possible mechanism based on the development of edge channels in Ag$_{2}$Te nanobelts to interpret the phenomenon. Our results not only introduce a peculiar nonreciprocal voltage transition in topological materials but also enrich the understanding of the intrinsic mechanism that strongly affects nonreciprocal charge transport.
|
|
Received: 11 August 2023
Editors' Suggestion
Published: 30 November 2023
|
|
PACS: |
72.20.Ht
|
(High-field and nonlinear effects)
|
|
73.43.Fj
|
(Novel experimental methods; measurements)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Tokura Y and Nagaosa N 2018 Nat. Commun. 9 3740 |
[2] | Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S, Kaneko Y, Nagaosa N, and Iwasa Y 2017 Nat. Phys. 13 578 |
[3] | He P, Zhang S S L, Zhu D, Liu Y, Wang Y, Vignale G, and Yang H 2018 Nat. Phys. 14 495 |
[4] | Wakatsuki R, Saito Y, Hoshino S, Itahashi Y M, Ideue T, Iwasa Y, and Nagaosa N 2017 Sci. Adv. 3 e1602390 |
[5] | Itahashi Y M, Ideue T, Saito Y, Shimizu S, Nojima T, and Iwasa Y 2020 Sci. Adv. 6 eaay9120 |
[6] | Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Hashizume D, and Iwasa Y 2017 Nat. Commun. 8 14465 |
[7] | Zhang E, Xu X, Zou Y C, Ai L, Dong X, Huang C, Leng P, Liu S, Zhang Y, Jia Z, Peng X, Zhao M, Yang Y, Li Z, Guo H, Haigh S J, Shen J, and Xiu F 2020 Nat. Commun. 11 5634 |
[8] | de Martino A, Egger R, and Tsvelik A M 2006 Phys. Rev. Lett. 97 076402 |
[9] | Yasuda K, Tsukazaki A, Yoshimi R, Kawasaki M, and Tokura Y 2016 Phys. Rev. Lett. 117 127202 |
[10] | Legg H F, Rößler M, Münning F, Fan D, Breunig O, Bliesener A, Lippertz G, Uday A, Taskin A A, Klinovaja J, and Ando Y 2022 Nat. Nanotechnol. 17 696 |
[11] | Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Gedik N, and Jarillo-Herrero P 2018 Nature 565 337 |
[12] | Kang K, Li T, Shan J, and Mak K F 2019 Nat. Mater. 18 324 |
[13] | Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J, Liang G, and Yang H 2021 Nat. Nanotechnol. 16 421 |
[14] | Lai S, Liu H, Zhang Z, Zhao J, Feng X, Wang N, Tang C, Liu Y, Yang S A, and Gao W B 2021 Nat. Nanotechnol. 16 869 |
[15] | Du Z Z, Wang C M, Lu H Z, and Xie X C 2018 Phys. Rev. Lett. 121 266601 |
[16] | Zhao W, Fei Z, Song T, Choi H K, Palomaki T, Sun B, Malinowski P, McGuire M A, Xu X, and Cobden D H 2020 Nat. Mater. 19 503 |
[17] | Yasuda K, Morimoto T, Yoshimi R, Mogi M, Tsukazaki A, Kawamura M, Takahashi K S, Nagaosa N, and Tokura Y 2020 Nat. Nanotechnol. 15 831 |
[18] | He P, Hsu C H, Shi S, Cai K, Wang J, Wang Q, Eda G, Pereira V M, and Yang H 2019 Nat. Commun. 10 1290 |
[19] | Zhang C, Yuan X, Zhang J, Leng P, Mou Y, Ni Z, Zhang H, Yang Y, and Xiu F 2021 Phys. Rev. Appl. 15 034084 |
[20] | Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Hwang H Y, and Tokura Y 2013 Science 342 1490 |
[21] | Chen G, Zholud A, and Urazhdin S 2020 Phys. Rev. X 10 011064 |
[22] | Wakatsuki R and Nagaosa N 2018 Phys. Rev. Lett. 121 026601 |
[23] | Avci C O, Garello K, Ghosh A, Alvarado S F, and Gambardella P 2015 Nat. Phys. 11 570 |
[24] | Zhang W, Yu R, Feng W, Yao Y, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808 |
[25] | Lee S, In J, Yoo Y, Jo Y, Park Y C, Kim H, Koo H C, Kim B, and Wang K L 2012 Nano Lett. 12 4194 |
[26] | Leng P, Chen F, Cao X, Wang Y, Huang C, Sun X, Yang Y, Zhou J, Xie X, Li Z, Zhang E, Yang Y, and Xiu F 2020 Nano Lett. 20 7004 |
[27] | Sulaev A, Teo K L, and Wang L 2015 Sci. Rep. 5 8062 |
[28] | Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel E C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Xiu F X, and Hillenbrand R 2023 Nat. Mater. 22 860 |
[29] | Huang C, Zhou B T, Zhang H, Yang B, Liu R, Wang H, Wan Y, Huang K, Liao Z, Zhang E, Liu S, Deng Q, Chen Y, Han X, Zou J, Lin X, Han Z, Law K T, and Xiu F 2019 Nat. Commun. 10 2217 |
[30] | Huang C, Narayan A, Zhang E, Xie X, Ai L, Liu S, Yi C, Sanvito S, and Xiu F 2020 Natl. Sci. Rev. 7 1468 |
[31] | Vodolazov D Y and Peeters F M 2005 Phys. Rev. B 72 172508 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|