Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 126403    DOI: 10.1088/0256-307X/40/12/126403
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Possible Quantum Spin Liquid Phase in the Kitaev–Hubbard Model
Shaojun Dong1, Hao Zhang2,3, Chao Wang1, Meng Zhang2,3, Yong-Jian Han1,2,3*, and Lixin He1,2,3,4*
1Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Shaojun Dong, Hao Zhang, Chao Wang et al  2023 Chin. Phys. Lett. 40 126403
Download: PDF(1546KB)   PDF(mobile)(1571KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum spin liquid (QSL) state of Kitaev-like materials, such as iridium oxides $A_2$IrO$_3$ and $\alpha$-RuCl$_3$, has been explored in depth. The half-filled Kitaev–Hubbard model with bond-dependent hopping terms is used to describe the Kitaev-like materials, which is calculated using the state-of-the-art fermionic projected entangled pair states method. We find a QSL phase near the Mott insulator transition, which has a strong first-order transition to the semi-metal phase with the decrease of Hubbard $U$. We suggest that a promising approach to finding QSL states is by finding iridium oxides that are near the Mott insulator transition.
Received: 12 September 2023      Editors' Suggestion Published: 06 December 2023
PACS:  64.70.Tg (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/126403       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/126403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaojun Dong
Hao Zhang
Chao Wang
Meng Zhang
Yong-Jian Han
and Lixin He
[1] Anderson P 1973 Mater. Res. Bull. 8 153
[2] Anderson P W 1987 Science 235 1196
[3] Balents L 2010 Nature 464 199
[4] Kitaev A 2003 Ann. Phys. 303 2
[5] Kitaev A 2006 Ann. Phys. 321 2
[6] Choi S K et al. 2012 Phys. Rev. Lett. 108 127204
[7] Singh Y et al. 2012 Phys. Rev. Lett. 108 127203
[8] Plumb K W et al. 2014 Phys. Rev. B 90 041112
[9] Sears J A et al. 2015 Phys. Rev. B 91 144420
[10] Baek S H et al. 2017 Phys. Rev. Lett. 119 037201
[11] Wolter A U B et al. 2017 Phys. Rev. B 96 041405
[12] Sears J A et al. 2017 Phys. Rev. B 95 180411
[13] Gass S et al. 2020 Phys. Rev. B 101 245158
[14] Bachus S et al. 2020 Phys. Rev. Lett. 125 097203
[15] Agrestini S et al. 2017 Phys. Rev. B 96 161107
[16] Chaloupka J et al. 2010 Phys. Rev. Lett. 105 027204
[17] Chaloupka J et al. 2013 Phys. Rev. Lett. 110 097204
[18] Schaffer R et al. 2012 Bhattacharjee S & Kim Y B Phys. Rev. B 86 224417
[19] Reuther J et al. 2011 Phys. Rev. B 84 100406
[20] Sela E et al. 2014 Phys. Rev. B 90 035113
[21] Liu X et al. 2011 Phys. Rev. B 83 220403
[22] Ye F et al. 2012 Phys. Rev. B 85 180403
[23] Ran K J, Wang J H, Bao S et al. 2022 Chin. Phys. Lett. 39 027501
[24] Ji J T, Sun M J, Cai Y Z et al. 2021 Chin. Phys. Lett. 38 047502
[25] Wang L, Zhang Y L, and Sandvik A W 2022 Chin. Phys. Lett. 39 077502
[26] Zhao X X, Ran K J, Wang J H et al. 2022 Chin. Phys. Lett. 39 057501
[27] Zheng J C et al. 2017 Phys. Rev. Lett. 119 227208
[28] Hassan S R et al. 2013 Phys. Rev. Lett. 110 037201
[29] Liang L, Wang Z, and Yu Y 2014 Phys. Rev. B 90 075119
[30] Faye J P L, Sénéchal D, and Hassan S R 2014 Phys. Rev. B 89 115130
[31] Banerjee A et al. 2016 Nat. Mater. 15 733
[32] Mohapatra S and Singh A 2019 J. Magn. Magn. Mater. 479 229
[33] Rau J G, Lee E K H, and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[34] Lubasch M, Cirac J I, and Bañuls M C 2014 New J. Phys. 16 033014
[35] Orús R 2014 Ann. Phys. 349 117
[36] Verstraete F, Murg V, and Cirac J 2008 Adv. Phys. 57 143
[37] Jiang H C, Weng Z Y, and Xiang T 2008 Phys. Rev. Lett. 101 090603
[38] Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 [cond-mat.str-el]
[39] Liu W Y, Dong S J, Han Y J, Guo G C, and He L 2017 Phys. Rev. B 95 195154
[40] Dong S J, Wang C, Han Y, Guo G C, and He L 2019 Phys. Rev. B 99 195153
[41] Gu Z C, Verstraete F, and Wen X G 2010 arXiv:1004.2563 [cond-mat.str-el]
[42] Corboz P and Orús R, Bauer B, and Vidal G 2010 Phys. Rev. B 81 165104
[43] Kraus C V and Schuch N, Verstraete F, and Cirac J I 2010 Phys. Rev. A 81 052338
[44] Barthel T, Pineda C, and Eisert J 2009 Phys. Rev. A 80 042333
[45] Laubach M et al. 2017 Phys. Rev. B 96 121110
[46] Liu W Y et al. 2018 Phys. Rev. B 98 241109
[47] Okamoto S 2013 Phys. Rev. B 87 064508
[48] Steinigeweg R and Brenig W 2016 Phys. Rev. B 93 214425
[49] Janssen L, Andrade E C, and Vojta M 2016 Phys. Rev. Lett. 117 277202
[50] Gohlke M and Verresen R, Moessner R, and Pollmann F 2017 Phys. Rev. Lett. 119 157203
[51] Joshi D G 2018 Phys. Rev. B 98 060405
[52] Metavitsiadis A, Psaroudaki C, and Brenig W 2019 Phys. Rev. B 99 205129
[53] Cônsoli P M and Janssen L, Vojta M, and Andrade E C 2020 Phys. Rev. B 102 155134
[54] Morita K and Tohyama T 2020 Phys. Rev. Res. 2 013205
[55] Zhang S S and Halász G B, Zhu W, and Batista C D 2021 Phys. Rev. B 104 014411
[56] Stoudenmire E and White S R 2012 Annu. Rev. Condens. Matter Phys. 3 111
Related articles from Frontiers Journals
[1] Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He, and Zhong-Yi Lu. Framework for Contrastive Learning Phases of Matter Based on Visual Representations[J]. Chin. Phys. Lett., 2023, 40(2): 126403
[2] Long Zhang and Chengxiang Ding. Finite-Size Scaling Theory at a Self-Dual Quantum Critical Point[J]. Chin. Phys. Lett., 2023, 40(1): 126403
[3] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 126403
[4] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 126403
[5] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 126403
[6] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 126403
[7] Wang-Jun Lu, Zhen Li, Le-Man Kuang. Nonlinear Dicke Quantum Phase Transition and Its Quantum Witness in a Cavity-Bose–Einstein-Condensate System[J]. Chin. Phys. Lett., 2018, 35(11): 126403
[8] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 126403
[9] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 126403
[10] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 126403
[11] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 126403
Viewed
Full text


Abstract