CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Local Rotational Jamming and Multi-Stage Hyperuniformities in an Active Spinner System |
Rui Liu1*, Jianxiao Gong2,4, Mingcheng Yang1,3, and Ke Chen1,3 |
1Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2National Center for Nanoscience and Technology, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Rui Liu, Jianxiao Gong, Mingcheng Yang et al 2023 Chin. Phys. Lett. 40 126402 |
|
|
Abstract An active system consisting of many self-spinning dimers is simulated, and a distinct local rotational jamming transition is observed as the density increases. In the low density regime, the system stays in an absorbing state, in which each dimer rotates independently subject to the applied torque; while in the high density regime, a fraction of the dimers become rotationally jammed into local clusters, and the system exhibits microphase-separation like two-phase morphologies. For high enough densities, the system becomes completely jammed in both rotational and translational degrees of freedom. Such a simple system is found to exhibit rich and multiscale disordered hyperuniformities among the above phases: the absorbing state shows a critical hyperuniformity of the strongest class and subcritically preserves the vanishing density fluctuation scaling up to some length scale; the locally jammed state shows a two-phase hyperuniformity conversely beyond some length scale with respect to the phase cluster sizes; the totally jammed state appears to be a monomer crystal, but intrinsically loses large-scale hyperuniformity. These results are inspiring for designing novel phase-separation and disordered hyperuniform systems through dynamical organization.
|
|
Received: 08 October 2023
Express Letter
Published: 17 November 2023
|
|
PACS: |
64.75.Gh
|
(Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.))
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
45.70.Qj
|
(Pattern formation)
|
|
|
|
|
[1] | Torquato S 2018 Phys. Rep. 745 1 |
[2] | Torquato S and Stillinger F H 2003 Phys. Rev. E 68 041113 |
[3] | Torquato S 2016 Phys. Rev. E 94 022122 |
[4] | Torquato S 2016 J. Phys.: Condens. Matter 28 414012 |
[5] | Torquato S 2021 Phys. Rev. E 103 052126 |
[6] | Florescu M, Torquato S, and Steinhardt P J 2009 Proc. Natl. Acad. Sci. USA 106 20658 |
[7] | Leseur O, Pierrat R, and Carminati R 2016 Optica 3 763 |
[8] | Froufe-Pérez L S, Engel M, Sáenz J J, and Scheffold F 2017 Proc. Natl. Acad. Sci. USA 114 9570 |
[9] | Gkantzounis G, Amoah T, and Florescu M 2017 Phys. Rev. B 95 094120 |
[10] | Chen D and Torquato S 2018 Acta Mater. 142 152 |
[11] | Yu S, Qiu C W, Chong Y, Torquato S, and Park N 2021 Nat. Rev. Mater. 6 226 |
[12] | Kirchhoff R and Löwen H 2005 Europhys. Lett. 69 291 |
[13] | van Zuiden B C, Paulose J, Irvine W T, Bartolo D, and Vitelli V 2016 Proc. Natl. Acad. Sci. USA 113 12919 |
[14] | Torquato S 2021 Proc. Natl. Acad. Sci. USA 118 e2107276118 |
[15] | Lei Q L, Ciamarra M P, and Ni R 2019 Sci. Adv. 5 eaau7423 |
[16] | Huang M J, Hu W S, Yang S Y, Liu Q X, and Zhang H P 2021 Proc. Natl. Acad. Sci. USA 118 e2100493118 |
[17] | Lei Q L and Ni R 2019 Proc. Natl. Acad. Sci. USA 116 22983 |
[18] | Scheibner C, Souslov A, Banerjee D, Surówka P, Irvine W T M, and Vitelli V 2020 Nat. Phys. 16 475 |
[19] | Hexner D and Levine D 2015 Phys. Rev. Lett. 114 110602 |
[20] | Zheng Y J, Parmar A D S, and Ciamarra M P 2021 Phys. Rev. Lett. 126 118003 |
[21] | Kim J and Torquato S 2019 Phys. Rev. E 99 052141 |
[22] | Zheng Y J, Li Y W, and Ciamarra M P 2020 Soft Matter 16 5942 |
[23] | Kim J and Torquato S 2021 Phys. Rev. E 103 012123 |
[24] | Zhang G, Stillinger F H, and Torquato S 2015 Phys. Rev. E 92 022119 |
[25] | Ma Z and Torquato S 2017 J. Appl. Phys. 121 244904 |
[26] | DiStasio R A, Zhang G, Stillinger F H, and Torquato S 2018 Phys. Rev. E 97 023311 |
[27] | Torquato S, Zhang G, and Stillinger F H 2015 Phys. Rev. X 5 021020 |
[28] | Torquato S, Kim J, and Klatt M A 2021 Phys. Rev. X 11 021028 |
[29] | Oğuz E C, Socolar J E S, Steinhardt P J, and Torquato S 2019 Acta Crystallogr. Sect. A 75 3 |
[30] | Dasbiswas K, Mandadapu K K, and Vaikuntanathan S 2018 Proc. Natl. Acad. Sci. USA 115 E9031 |
[31] | Banerjee D, Souslov A, Abanov A G, and Vitelli V 2017 Nat. Commun. 8 1573 |
[32] | Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F, and Yang M 2021 Phys. Rev. Lett. 126 198001 |
[33] | Yang Q, Liang H, Liu R, Chen K, Ye F, and Yang M 2021 Chin. Phys. Lett. 38 128701 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|