Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 126401    DOI: 10.1088/0256-307X/40/12/126401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Tunable Memory and Activity of Quincke Particles in Micellar Fluid
Yang Yang1†, Meng Fei Zhang1†, Lailai Zhu2, and Tian Hui Zhang1*
1Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
Cite this article:   
Yang Yang, Meng Fei Zhang, Lailai Zhu et al  2023 Chin. Phys. Lett. 40 126401
Download: PDF(2517KB)   PDF(mobile)(2534KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Memory can remarkably modify the collective behavior of active particles. We show that, in a micellar fluid, Quincke particles driven by a square-wave electric field exhibit a frequency-dependent memory. Upon increasing the frequency, a memory of directions emerges, whereas the activity of particles decreases. As the activity is dominated by interaction, Quincke particles aggregate and form dense clusters, in which the memory of the direction is further enhanced due to the stronger electric interactions. The density-dependent memory and activity result in dynamic heterogeneity in flocking and offer a new opportunity for research of collective motions.
Received: 13 August 2023      Published: 22 November 2023
PACS:  64.75.Yz (Self-assembly)  
  47.57.J- (Colloidal systems)  
  71.45.-d (Collective effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/126401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/126401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Yang
Meng Fei Zhang
Lailai Zhu
and Tian Hui Zhang
[1] Ramaswamy S 2017 J. Stat. Mech.: Theory Exp. 2017 054002
[2] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[3] Shaebani M R, Wysocki A, Winkler R G, Gompper G, and Rieger H 2020 Nat. Rev. Phys. 2 181
[4] Bialké J, Speck T, and Löwen H 2012 Phys. Rev. Lett. 108 168301
[5] Vicsek T, Czirók A, Ben-Jacob E, Cohen I, and Shochet O 1995 Phys. Rev. Lett. 75 1226
[6] Chaté H 2020 Annu. Rev. Condens. Matter Phys. 11 189
[7] Nagai K H, Sumino Y, Montagne R, Aranson I S, and Chaté H 2015 Phys. Rev. Lett. 114 168001
[8] Nejad M R, Doostmohammadi A, and Yeomans J M 2021 Soft Matter 17 2500
[9] Narinder N, Bechinger C, and Gomez-Solano J R 2018 Phys. Rev. Lett. 121 078003
[10] Jones T B 1984 IEEE Trans. Ind. Appl. IA-20 845
[11] Das D and Saintillan D 2013 Phys. Rev. E 87 043014
[12] Bricard A, Caussin J B, Desreumaux N, Dauchot O, and Bartolo D 2013 Nature 503 95
[13] Karani H, Pradillo G E, and Vlahovska P M 2019 Phys. Rev. Lett. 123 208002
[14] Zhang B, Snezhko A, and Sokolov A 2022 Phys. Rev. Lett. 128 018004
[15] Yang Y, Zhang Z C, Qi F, and Zhang T H 2022 arXiv:2204.07717 [cond-mat.soft]
[16] Zhang B, Yuan H, Sokolov A, de la Cruz M O, and Snezhko A 2022 Nat. Phys. 18 154
[17] Liu Z T, Shi Y, Zhao Y, Chaté H, Shi X Q, and Zhang T H 2021 Proc. Natl. Acad. Sci. USA 118 e2104724118
[18] Zhang B, Karani H, Vlahovska P M, and Snezhko A 2021 Soft Matter 17 4818
[19] Lu S Q, Zhang B Y, Zhang Z C, Shi Y, and Zhang T H 2018 Soft Matter 14 5092
[20] Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298
[21] Han E, Zhu L, Shaevitz J W, and Stone H A 2021 Proc. Natl. Acad. Sci. USA 118 e2022000118
[22] Pradillo G E, Karani H, and Vlahovska P M 2019 Soft Matter 15 6564
[23] Mukherjee K, Moulik S P, and Mukherjee D C 1993 Langmuir 9 1727
[24] Hsu M F, Dufresne E R, and Weitz D A 2005 Langmuir 21 4881
[25] Gomez-Solano J R, and Bechinger C 2014 Europhys. Lett. 108 54008
[26] Goychuk I 2022 Proc. Natl. Acad. Sci. USA 119 e2205637119
[27] Berner J, Müller B, Gomez-Solano J R, Krüger M, and Bechinger C 2018 Nat. Commun. 9 999
[28] Jayaraman A and Belmonte A 2003 Phys. Rev. E 67 065301
[29] Zhang Y and Muller S J 2018 Phys. Rev. Fluids 3 043301
[30] Mrokowska M M and Krztoń-Maziopa A 2019 Sci. Rep. 9 7897
[31] Zhang T H and Liu X Y 2014 Chem. Soc. Rev. 43 2324
[32] Mittal M, Lele P P, Kaler E W, and Furst E M 2008 J. Chem. Phys. 129 064513
[33] Ristenpart W D, Aksay I A, and Saville D A 2007 Langmuir 23 4071
[34] Chen H Y, Wang L, and Zhang T H 2021 Chin. Phys. Lett. 38 066101
[35] Zhang T H, Zhang Z C, Cao J S, and Liu X Y 2019 Phys. Chem. Chem. Phys. 21 7398
Related articles from Frontiers Journals
[1] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 126401
[2] Qing Yang, Huan Liang, Rui Liu, Ke Chen, Fangfu Ye, and Mingcheng Yang. Edge Transport and Self-Assembly of Passive Objects in a Chiral Active Fluid[J]. Chin. Phys. Lett., 2021, 38(12): 126401
[3] Weiyu Xie, Yu Zhu, Jianpeng Wang, Aihua Cheng, Zhigang Wang. Magnetic Coupling Induced Self-Assembly at Atomic Level[J]. Chin. Phys. Lett., 2019, 36(11): 126401
[4] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 126401
[5] PAN Jun-Xing, ZHANG Jin-Jun, WANG Bao-Feng, WU Hai-Shun, SUN Min-Na . Harnessing Light and Single Masks to Create Multiple Patterns in a Ternary Blend with Photoinduced Reaction[J]. Chin. Phys. Lett., 2013, 30(7): 126401
[6] PAN Jun-Xing, ZHANG Jin-Jun, WANG Bao-Feng, WU Hai-Shun, SUN Min-Na. A Diblock-Diblock Copolymer Mixture under Parallel Wall Confinement[J]. Chin. Phys. Lett., 2013, 30(4): 126401
[7] TIE Zuo-Xiu, QIN Meng**, ZOU Da-Wei, CAO Yi**, WANG Wei . Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides[J]. Chin. Phys. Lett., 2011, 28(2): 126401
Viewed
Full text


Abstract