Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 124601    DOI: 10.1088/0256-307X/40/12/124601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Negative Poisson's Ratios of Layered Materials by First-Principles High-Throughput Calculations
Hanzhang Zhao, Yuxin Cai, Xinghao Liang, Kun Zhou, Hongshuai Zou*, and Lijun Zhang*
State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
Cite this article:   
Hanzhang Zhao, Yuxin Cai, Xinghao Liang et al  2023 Chin. Phys. Lett. 40 124601
Download: PDF(10995KB)   PDF(mobile)(11404KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Auxetic two-dimensional (2D) materials, known from their negative Poisson's ratios (NPRs), exhibit the unique property of expanding (contracting) longitudinally while being laterally stretched (compressed), contrary to typical materials. These materials offer improved mechanical characteristics and hold great potential for applications in nanoscale devices such as sensors, electronic skins, and tissue engineering. Despite their promising attributes, the availability of 2D materials with NPRs is limited, as most 2D layered materials possess positive Poisson's ratios. In this study, we employ first-principles high-throughput calculations to systematically explore Poisson's ratios of 40 commonly used 2D monolayer materials, along with various bilayer structures. Our investigation reveals that BP, GeS and GeSe exhibit out-of-plane NPRs due to their hinge-like puckered structures. For 1T-type transition metal dichalcogenides such as $MX_{2}$ ($M$ = Mo, W; $X$ = S, Se, Te) and transition metal selenides/halides the auxetic behavior stems from a combination of geometric and electronic structural factors. Notably, our findings unveil V$_{2}$O$_{5}$ as a novel material with out-of-plane NPR. This behavior arises primarily from the outward movement of the outermost oxygen atoms triggered by the relaxation of strain energy under uniaxial tensile strain along one of the in-plane directions. Furthermore, our computations demonstrate that Poisson's ratio can be tuned by varying the bilayer structure with distinct stacking modes attributed to interlayer coupling disparities. These results not only furnish valuable insights into designing 2D materials with a controllable NPR but also introduce V$_{2}$O$_{5}$ as an exciting addition to the realm of auxetic 2D materials, holding promise for diverse nanoscale applications.
Received: 30 August 2023      Published: 27 November 2023
PACS:  46.55.+d (Tribology and mechanical contacts)  
  31.15.A- (Ab initio calculations)  
  63.22.Np (Layered systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/124601       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/124601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hanzhang Zhao
Yuxin Cai
Xinghao Liang
Kun Zhou
Hongshuai Zou
and Lijun Zhang
[1] Qian C, Zhou K, Xiong Y, Chen X, and Li Z 2022 Chem. Mater. 34 4344
[2] Yeganeh-Haeri A, Weidner D J, and Parise J B 1992 Science 257 650
[3] Evans K E, Nkansah M A, Hutchinson I J, and Rogers S C 1991 Nature 353 124
[4] Choi J B and Lakes R S 1996 Int. J. Fract. 80 73
[5] Choi J B and Lakes R S 1992 J. Mater. Sci. 27 4678
[6] Greaves G N, Greer A L, Lakes R S, and Rouxel T 2019 Nat. Mater. 18 406
[7] Zhang S L, Lai Y C, He X, Liu R, Zi Y, and Wang Z L 2017 Adv. Funct. Mater. 27 1606695
[8] Yeon H, Lee H, Kim Y, Lee D, Lee Y, Lee J S, Shin J, Choi C, Kang J H, Suh J M, Kim H, Kum H S, Lee J, Kim D, Ko K, Ma B S, Lin P, Han S, Kim S, Bae S H, Kim T S, Park M C, Joo Y C, Kim E, Han J, and Kim J 2021 Sci. Adv. 7 eabg8459
[9] Scarpa F 2008 IEEE Signal Process. Mag. 25 128
[10] Steed A, Ofek E, Sinclair M, and Gonzalez-Franco M 2021 Nat. Commun. 12 4758
[11] Baughman R H, Shacklette J M, Zakhidov A A, and Stafström S 1998 Nature 392 362
[12] Azzopardi K M, Brincat J P, Grima J N, and Gatt R 2015 RSC Adv. 5 8974
[13] Grima J N, Gatt R, Zammit V, Williams J J, Evans K E, Alderson A, and Walton R I 2007 J. Appl. Phys. 101 086102
[14] Ortiz A U, Boutin A, Fuchs A H, and Coudert F X 2012 Phys. Rev. Lett. 109 195502
[15] Wei Z Y, Guo Z V, Dudte L, Liang H Y, and Mahadevan L 2013 Phys. Rev. Lett. 110 215501
[16] Silverberg J L, Evans A A, McLeod L, Hayward R C, Hull T, Santangelo C D, and Cohen I 2014 Science 345 647
[17] Lakes R 1991 J. Mater. Sci. 26 2287
[18] Kong X, Deng J, Li L, Liu Y, Ding X, Sun J, and Liu J Z 2018 Phys. Rev. B 98 184104
[19] Zakharchenko K V, Katsnelson M I, and Fasolino A 2009 Phys. Rev. Lett. 102 046808
[20] Jiang J W and Park H S 2014 Nat. Commun. 5 4727
[21] Du Y, Maassen J, Wu W, Luo Z, Xu X, and Ye P D 2016 Nano Lett. 16 6701
[22] Han J, Xie J, Zhang Z, Yang D, Si M, and Xue D 2015 Appl. Phys. Express 8 041801
[23] Kou L, Ma Y, Tang C, Sun Z, Du A, and Chen C 2016 Nano Lett. 16 7910
[24] Peng R, Ma Y, Wu Q, Huang B, and Dai Y 2019 Nanoscale 11 11413
[25] Peng R, Ma Y, He Z, Huang B, Kou L, and Dai Y 2019 Nano Lett. 19 1227
[26] Jin W, Pang J, Yue L, Xie M, Kuang X, and Lu C 2022 J. Phys. Chem. Lett. 13 10494
[27] Wang Y, Li F, Li Y, and Chen Z 2016 Nat. Commun. 7 11488
[28] Gao Z, Dong X, Li N, and Ren J 2017 Nano Lett. 17 772
[29] Sun H, Mukherjee S, and Singh C V 2016 Phys. Chem. Chem. Phys. 18 26736
[30] Özçelik V O, Cahangirov S, and Ciraci S 2014 Phys. Rev. Lett. 112 246803
[31] Ma F, Jiao Y, Wu W, Liu Y, Yang S A, and Heine T 2021 Nano Lett. 21 2356
[32] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[33] Pan J, Zhang Y F, Zhang J, Banjade H, Yu J, Yu L, Du S, Ruzsinszky A, Hu Z, and Yan Q 2020 npj Comput. Mater. 6 154
[34] Yu L, Yan Q, and Ruzsinszky A 2017 Nat. Commun. 8 15224
[35] Qin G and Qin Z 2020 npj Comput. Mater. 6 51
[36] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[40] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630
[41] Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y, and Zhang L 2021 Sci. Bull. 66 1973
[42] Zhang C, Park S H, O'Brien S E, Seral-Ascaso A, Liang M, Hanlon D, Krishnan D, Crossley A, McEvoy N, Coleman J N, and Nicolosi V 2017 Nano Energy 39 151
Related articles from Frontiers Journals
[1] CHEN Jian-Song, GE Yun**, ZHANG Hui**. Torsional Vibrations of a Cantilever with Lateral Friction in a Resonance Friction Microscope[J]. Chin. Phys. Lett., 2012, 29(1): 124601
[2] CHEN Shao-Hua, CHEN Pei-Jian. Nanoadhesion of a Power-Law Graded Elastic Material[J]. Chin. Phys. Lett., 2010, 27(10): 124601
[3] CHEN Shao-Hua, PENG Zhi-Long. An Extension of the Two-Dimensional JKR Theory to the Case with a Large Contact Width[J]. Chin. Phys. Lett., 2009, 26(12): 124601
[4] CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 124601
Viewed
Full text


Abstract