Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 124402    DOI: 10.1088/0256-307X/40/12/124402
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Prediction of Thermal Conductance of Complex Networks with Deep Learning
Changliang Zhu1, Xiangying Shen1*, Guimei Zhu2*, and Baowen Li1,2,3,4
1Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
3Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
4Shenzhen International Quantum Academy, Shenzhen 518017, China
Cite this article:   
Changliang Zhu, Xiangying Shen, Guimei Zhu et al  2023 Chin. Phys. Lett. 40 124402
Download: PDF(2362KB)   PDF(mobile)(2370KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix. Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains.
Received: 19 October 2023      Express Letter Published: 22 November 2023
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  89.75.Fb (Structures and organization in complex systems)  
  89.75.-k (Complex systems)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/124402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/124402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Changliang Zhu
Xiangying Shen
Guimei Zhu
and Baowen Li
[1] Dorogovtsev S N, Goltsev A V, and Mendes J F 2008 Rev. Mod. Phys. 80 1275
[2] Yan H, Park S H, Finkelstein G, Reif J H, and LaBean T H 2003 Science 301 1882
[3] Liu D G, Park S H, Reif J H, and LaBean T H 2004 Proc. Natl. Acad. Sci. USA 101 717
[4] Yin P, Hariadi R F, Sahu S, Choi H M, Park S H, LaBean T H, and Reif J H 2008 Science 321 824
[5] Wang S, Zeng C, Zhu G, Wang H, and Li B 2023 Phys. Rev. Res. 5 043009
[6] Shen X Y, Zhu G M, and Li B W 2023 Sci. Chin. Phys. Mech. & Astron. 66 260501
[7] Shen X Y, Fang C C, Jin Z P, Tong H, Tang S X, Shen H C, Xu N, Lo J H Y, Xu X L, and Xu L 2021 Nat. Mater. 20 1635
[8] Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y, Liu J, Zhou J, and Li B W 2020 Chin. Phys. Lett. 37 104401
[9] Newman M E and Park J 2003 Phys. Rev. E 68 036122
[10] Albert R, Jeong H, and Barabási A L 2000 Nature 406 378
[11] Laughlin S B and Sejnowski T J 2003 Science 301 1870
[12] Tian C H, Cao L, Bi H J, Xu K, and Liu Z H 2018 Nonlinear Dyn. 93 1695
[13] Song Y J, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, and Shelnutt J A 2007 Nano Lett. 7 3650
[14] Hu L, Hecht D, and Grüner G 2004 Nano Lett. 4 2513
[15] Hecht D, Hu L, and Grüner G 2006 Appl. Phys. Lett. 89 133112
[16] Rauber M, Alber I, Müller S, Neumann R, Picht O, Roth C, Schökel A, Toimil-Molares M E, and Ensinger W 2011 Nano Lett. 11 2304
[17] van de Groep J, Spinelli P, and Polman A 2012 Nano Lett. 12 3138
[18] Xiong K Z, Liu Z H, Zeng C H, and Li B W 2020 Natl. Sci. Rev. 7 270
[19] Xiong K Z, Yan Z X, Xie Y, Wang Y X, Zeng C H, and Liu Z H 2022 Nonlinear Dyn. 110 2771
[20] Xiong K Z, Zeng C H, and Liu Z H 2018 Nonlinear Dyn. 94 3067
[21] Xiong K Z, Zeng C H, Liu Z H, and Li B W 2018 Phys. Rev. E 98 022115
[22] Xiong K Z, Zhou J, Tang M, Zeng C H, and Liu Z H 2018 Phys. Rev. E 98 062144
[23] Xiong K Z, Zhou M, Liu W, Zeng C H, and Yan Z X 2023 Chaos 33 083144
[24] Dhar A 2008 Adv. Phys. 57 457
[25] Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045
[26] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, and Phillpot S R 2003 J. Appl. Phys. 93 793
[27] Kumar S, Murthy J, and Alam M 2005 Phys. Rev. Lett. 95 066802
[28] Pop E, Mann D, Cao J, Wang Q, Goodson K, and Dai H 2005 Phys. Rev. Lett. 95 155505
[29] Boccaletti S, Latora V, Moreno Y, Chavez M, and Hwang D U 2006 Phys. Rep. 424 175
[30] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[31] Watts D J and Strogatz S H 1998 Nature 393 440
[32] Oliveira C L, Morais P A, Moreira A A, and Andrade J S 2014 Phys. Rev. Lett. 112 148701
[33] Xiong K Z, Yan Z X, Xie Y, and Liu Z H 2021 Sci. Rep. 11 5501
[34] Zhang Z W, Yang S, Wu Y H, Liu C X, Han Y M, Lee C H, Sun Z, Li G J, and Zhang X 2020 Chin. Phys. Lett. 37 018401
[35] Ouyang Y L, Zhang Z W, Yu C Q, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301
[36] Zhang Y C, Blattner M, and Yu Y K 2007 Phys. Rev. Lett. 99 154301
[37] Liu Z H, Wu X, Yang H J, Gupte N, and Li B W 2010 New J. Phys. 12 023016
Related articles from Frontiers Journals
[1] Hui Li, Yan-Lin Fu, Ji-Quan Li, and Zheng-Xiong Wang. Simulation Prediction of Heat Transport with Machine Learning in Tokamak Plasmas[J]. Chin. Phys. Lett., 2023, 40(12): 124402
[2] Yu-Gang Ma, Long-Gang Pang, Rui Wang, and Kai Zhou. Phase Transition Study Meets Machine Learning[J]. Chin. Phys. Lett., 2023, 40(12): 124402
[3] Xia Xiong, Yong-Cong Chen, Chunxiao Shi, and Ping Ao. Stochastic Gradient Descent and Anomaly of Variance-Flatness Relation in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(8): 124402
[4] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 124402
[5] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 124402
[6] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 124402
[7] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 124402
[8] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 124402
[9] Huikang Huang, Haozhen Situ, and Shenggen Zheng. Bidirectional Information Flow Quantum State Tomography[J]. Chin. Phys. Lett., 2021, 38(4): 124402
[10] Yaoyu Zhang, Tao Luo, Zheng Ma, and Zhi-Qin John Xu. A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks[J]. Chin. Phys. Lett., 2021, 38(3): 124402
[11] Lin Zhuang, Qijun Ye, Ding Pan, Xin-Zheng Li. Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties[J]. Chin. Phys. Lett., 2020, 37(4): 124402
[12] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 124402
[13] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 124402
[14] ZHANG Xiao-Yan, MENG Yao-Yong, **, ZHANG Hao, OU Wen-Juan, LIU Song-Hao . Fast Nondestructive Identification of Endothelium Corneum Gigeriae Galli Using Visible/Near-Infrared Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(12): 124402
[15] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 124402
Viewed
Full text


Abstract