Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117801    DOI: 10.1088/0256-307X/40/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultrafast Condensed Matter Physics at Attoseconds
Shi-Qi Hu1 and Sheng Meng1,2,3*
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Shi-Qi Hu and Sheng Meng 2023 Chin. Phys. Lett. 40 117801
Download: PDF(22337KB)   PDF(mobile)(22368KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences. In this review, the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed. In particular, the focus is put on recent developments of attosecond dynamics of charge, exciton, and magnetism. New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted. Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed. These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers, laser medical engineering, and ultrafast electronic devices.
Received: 10 October 2023      Review Published: 26 October 2023
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  78.70.-g (Interactions of particles and radiation with matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Qi Hu and Sheng Meng
[1] Maiman T H 1960 Nature 187 493
[2] Mankowsky R et al. 2014 Nature 516 71
[3] Mitrano M et al. 2016 Nature 530 461
[4] McIver J W et al. 2020 Nat. Phys. 16 38
[5] Duan S F et al. 2021 Nature 595 239
[6] Kogar A et al. 2020 Nat. Phys. 16 159
[7] Zhang J et al. 2019 Nano Lett. 19 6027
[8] Wang Y H et al. 2013 Science 342 453
[9] Zhou S H et al. 2023 Nature 614 75
[10] Pitruzzello G 2022 Nat. Photonics 16 550
[11] He L X et al. 2022 Chin. Phys. B 31 123301
[12] Hentschel M et al. 2001 Nature 414 509
[13] Kienberger R et al. 2004 Nature 427 817
[14] Sansone G et al. 2006 Science 314 443
[15] Goulielmakis E et al. 2008 Science 320 1614
[16] Zhao K et al. 2012 Opt. Lett. 37 3891
[17] Thomas G et al. 2017 Opt. Express 25 27506
[18] Sekikawa T et al. 2004 Nature 432 605
[19] Mashiko H et al. 2008 Phys. Rev. Lett. 100 103906
[20] Ferrari F et al. 2010 Nat. Photonics 4 875
[21] Xue B et al. 2020 Sci. Adv. 6 eaay2802
[22] McPherson A et al. 1987 J. Opt. Soc. Am. B 4 595
[23] Zong A et al. 2023 Nat. Rev. Mater. 8 224
[24] Geneaux R et al. 2019 Philos. Trans. R. Soc. A 377 20170463
[25] Goulielmakis E et al. 2022 Nat. Photonics 16 411
[26] Wu M X et al. 2015 Phys. Rev. A 91 043839
[27] Vampa G et al. 2015 Phys. Rev. B 91 064302
[28] Chin A H et al. 2001 Phys. Rev. Lett. 86 3292
[29] Ghimire S et al. 2011 Nat. Phys. 7 138
[30] Vampa G et al. 2015 Phys. Rev. Lett. 115 193603
[31] Lanin A A et al. 2017 Optica 4 516
[32] Lv Y Y et al. 2021 Nat. Commun. 12 6437
[33] Luu T et al. 2018 Nat. Commun. 9 916
[34] Bai Y et al. 2021 Nat. Phys. 17 311
[35] Schmid C P et al. 2021 Nature 593 385
[36] You Y et al. 2017 Nat. Phys. 13 345
[37] Lakhotia H et al. 2020 Nature 583 55
[38]Hu S et al. 2023 Nat. Commun. (submitted)
[39] Mashiko H et al. 2016 Nat. Phys. 12 741
[40] Schlaepfer F et al. 2018 Nat. Phys. 14 560
[41] Schultze M et al. 2013 Nature 493 75
[42] Martin S et al. 2014 Science 346 1348
[43] Emin D and Hart C F 1987 Phys. Rev. B 36 7353
[44] Lucchini M et al. 2016 Science 353 916
[45] Sidiropoulos T P H et al. 2021 Phys. Rev. X 11 041060
[46] Ossiander M et al. 2018 Nature 561 374
[47] Haynes D C et al. 2021 Nat. Phys. 17 512
[48] Fabian S et al. 2017 Science 357 1274
[49] Seth L C 2017 Phys. Rev. X 7 041030
[50] Ito et al. 2023 Nature 616 696
[51] Cavalieri A et al. 2007 Nature 449 1029
[52] Garg M et al. 2022 Nat. Photonics 16 196
[53] Nabben D et al. 2023 Nature 619 63
[54] Tao Z S et al. 2016 Science 353 62
[55] Heinrich S et al. 2021 Nat. Commun. 12 3404
[56] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[57] Lewenstein M et al. 1994 Phys. Rev. A 49 2117
[58] Schultze M et al. 2010 Science 328 1658
[59] Kelkensberg F et al. 2011 Phys. Rev. Lett. 107 043002
[60] Siu W et al. 2011 Phys. Rev. A 84 063412
[61] Ranitovic P et al. 2014 Proc. Natl. Acad. Sci. USA 111 912
[62] Calegari F et al. 2014 Science 346 336
[63] Kraus P M et al. 2015 Science 350 790
[64] Matselyukh D T et al. 2022 Nat. Phys. 18 1206
[65] Sommer A et al. 2016 Nature 534 86
[66] Volkov M et al. 2019 Nat. Phys. 15 1145
[67] Hui D D et al. 2022 Nat. Photonics 16 33
[68] Amusia M Y et al. 2000 Rep. Prog. Phys. 63 41
[69] Schumacher Z et al. 2023 Proc. Natl. Acad. Sci. USA 120 e2221725120
[70] Krausz F et al. 2014 Nat. Photonics 8 205
[71] Karni O et al. 2019 Phys. Rev. Lett. 123 247402
[72] Novoselov K S et al. 2016 Science 353 aac9439
[73] Unuchek D et al. 2018 Nature 560 340
[74] Moulet A et al. 2017 Science 357 1134
[75] Lucchini M et al. 2021 Nat. Commun. 12 1021
[76] Lucchini M et al. 2020 J. Phys.: Photonics 2 025001
[77] Freudenstein J et al. 2022 Nature 610 290
[78] Xu X D et al. 2014 Nat. Phys. 10 343
[79] Langer F et al. 2018 Nature 557 76
[80] John K D et al. 2018 Nano Lett. 18 1842
[81] Lambert C H et al. 2014 Science 345 1337
[82] Kimel A et al. 2004 Nature 429 850
[83] Le Guyader L et al. 2013 Phys. Rev. B 87 054437
[84] Paolo C et al. 1993 Phys. Rev. Lett. 70 694
[85] Cui L S et al. 2020 Nat. Photonics 14 636
[86] Shankar S et al. 2018 Nat. Commun. 9 4750
[87] Wu N et al. 2023 Prog. Surf. Sci. 2023 100709
[88] Beaurepaire E et al. 1996 Phys. Rev. Lett. 76 4250
[89] Chen Z H et al. 2019 Sci. Adv. 5 eaau8000
[90] Neufeld O et al. 2023 npj Comput. Mater. 9 39
[91] Siegrist F et al. 2019 Nature 571 240
[92]Neamen D A 2011 Semiconductor Physics and Devices: Basic Principles (New York: McGraw-Hill)
[93] Mei X B et al. 2015 IEEE Electron Device Lett. 36 327
[94] Tim P C et al. 2016 Optica 3 1358
[95] Korobenko A et al. 2020 Optica 7 1372
[96] Schiffrin A et al. 2013 Nature 493 70
[97] Luu T et al. 2015 Nature 521 498
[98] Husain A et al. 2022 Faraday Discuss. 237 317
[99] Georg W et al. 2014 Phys. Rev. Lett. 113 087401
[100] Itatani J et al. 2002 Phys. Rev. Lett. 88 173903
[101] Goulielmakis E et al. 2004 Science 305 1267
[102] Garg M et al. 2016 Nature 538 359
[103] Husain A et al. 2022 APL Photonics 7 041301
[104] Hui D D et al. 2023 Sci. Adv. 9 eadf1015
[105] Neufeld O et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2204219119
[106] Bionta M R et al. 2021 Phys. Rev. Res. 3 023250
[107] Hu S et al. 2023 arXiv:2304.09459 [cond-mat.mtrl-sci]
[108] Drozdov A P et al. 2015 Nature 525 73
[109] Drozdov A P et al. 2019 Nature 569 528
[110] Lein M 2005 Phys. Rev. Lett. 94 053004
[111] Baker S et al. 2006 Science 312 424
[112] Li W et al. 2008 Science 322 1207
[113] Rana N et al. 2022 Phys. Rev. B 106 064303
[114] Tikhomirov I D et al. 2017 Phys. Rev. Lett. 118 203202
[115] Silva R E F et al. 2018 Nat. Photonics 12 266
[116] Murakami Y et al. 2018 Phys. Rev. Lett. 121 057405
[117] Imai S et al. 2020 Phys. Rev. Lett. 124 157404
[118] Uchida K et al. 2022 Phys. Rev. Lett. 128 127401
[119] Nicolas T D et al. 2018 Phys. Rev. Lett. 121 097402
[120] Xu J Y et al. 2022 Sci. Adv. 8 eadd2392
[121] Shao C et al. 2022 Phys. Rev. Lett. 128 047401
[122] Neufeld O et al. 2023 Phys. Rev. X 13 031011
[123] Qian C et al. 2
Related articles from Frontiers Journals
[1] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 117801
[2] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 117801
[3] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$[J]. Chin. Phys. Lett., 2020, 37(6): 117801
[4] Cong-Ying Jiang, Hai-Ying Song, T. Xie, C. Liu, H. Q. Luo, S. Z. Zhao, Xiu Zhang, X. C. Nie, Jian-Qiao Meng, Yu-Xia Duan, H. Y. Liu, Shi-Bing Liu. Time-Resolved Study of Pseudogap and Superconducting Quasiparticle Dynamics in Ca$_{0.82}$La$_{0.18}$Fe$_{1-x}$Ni$_{x}$As$_{2}$ *[J]. Chin. Phys. Lett., 0, (): 117801
[5] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 117801
[6] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 117801
[7] Yu-Zhu Liu, Jin-You Long, Lin-Hua Xu, Xiang-Yun Zhang, Bing Zhang. Probing Ultrafast Dissociation Dynamics of Chloroiodomethane in the B Band by Time-Resolved Mass Spectrometry[J]. Chin. Phys. Lett., 2017, 34(3): 117801
[8] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 117801
[9] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 117801
[10] LIU Yu-Zhu, KNOPP Gregor, XIAO Shao-Rong, GERBER Thomas. Ultrafast Imaging of Electronic Relaxation in Ortho-xylene: New Features from Fragmentation-Ion Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(12): 117801
[11] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 117801
[12] CHEN Zhi, WEN Qi-Ye, DONG Kai, SUN Dan-Dan, QIU Dong-Hong, ZHANG Huai-Wu. Ultrafast and Broadband Terahertz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films[J]. Chin. Phys. Lett., 2013, 30(1): 117801
[13] CHEN Tao, SI Jin-Hai, LIU Xiang, CHEN Feng, HOU Xun. The Influence of Coherent Transient Energy Transfer on Femtosecond Time-Resolved Z-Scan Measurements[J]. Chin. Phys. Lett., 2012, 29(10): 117801
[14] YAN Li-He, JIA Sen, SI Jin-Hai, MATSUO Shigeki, CHEN Feng, HOU Xun. Application of Optical Kerr Gate with SrTiO3 Crystal in Acquisition of Gated Spectra from a Supercontinuum[J]. Chin. Phys. Lett., 2012, 29(7): 117801
[15] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 117801
Viewed
Full text


Abstract