CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals |
Gaojie Zhang1,2, Qingyuan Luo3, Xiaokun Wen1,2, Hao Wu1,2*, Li Yang1,2, Wen Jin1,2, Luji Li1,2, Jia Zhang4, Wenfeng Zhang1,2,5, Haibo Shu3*, and Haixin Chang1,2,5* |
1State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 3College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China 4School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China 5Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China
|
|
Cite this article: |
Gaojie Zhang, Qingyuan Luo, Xiaokun Wen et al 2023 Chin. Phys. Lett. 40 117501 |
|
|
Abstract The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe$_{3}$GaTe$_{2-x}$ crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of $\sim$ 5.4 $µ \Omega\cdot$cm at 10 K and $\sim$ 0.15 $µ \Omega\cdot$cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of $\sim$ $6.2\times10^{5}$ A$\cdot$cm$^{-2}$. First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
|
|
Received: 17 October 2023
Express Letter
Published: 01 November 2023
|
|
PACS: |
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
12.39.Dc
|
(Skyrmions)
|
|
75.50.Gg.
|
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
|
|
|
[1] | Jani H, Lin J C, Chen J, Harrison J, Maccherozzi F, Schad J, Prakash S, Eom C B, Ariando A, Venkatesan T, and Radaelli P G 2021 Nature 590 74 |
[2] | Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, and Hoffmann A 2015 Science 349 283 |
[3] | Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031 |
[4] | Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915 |
[5] | Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, and Tokura Y 2010 Nature 465 901 |
[6] | Zhang H R, Raftrey D, Chan Y T, Shao Y T, Chen R, Chen X, Huang X, Reichanadter J T, Dong K, Susarla S, Caretta L, Chen Z, Yao J, Fischer P, Neaton J B, Wu W, Muller D A, Birgeneau R J, and Ramesh R 2022 Sci. Adv. 8 eabm7103 |
[7] | Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, and Jiang W J 2022 Chin. Phys. Lett. 39 017501 |
[8] | Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T H, and Tokura Y 2019 Science 365 914 |
[9] | Skoropata E, Nichols J, Ok J M, Chopdekar R V, Choi E S, Rastogi A, Sohn C, Gao X, Yoon S, Farmer T, Desautels R D, Choi Y, Haskel D, Freeland J W, Okamoto S, Brahlek M, and Lee H N 2020 Sci. Adv. 6 eaaz3902 |
[10] | Shao Q M, Liu Y W, Yu G Q, Kim S K, Che X Y, Tang C, He Q L, Tserkovnyak Y, Shi J, and Wang K L 2019 Nat. Electron. 2 182 |
[11] | Wu Y Y, Zhang S F, Zhang J W, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, and Wang K L 2020 Nat. Commun. 11 3860 |
[12] | Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, and Panagopoulos C 2017 Nat. Mater. 16 898 |
[13] | Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S, Li P, and Bian G 2021 ACS Nano 15 15710 |
[14] | Wu Y Y, Francisco B, Chen Z, Wang W, Zhang Y, Wan C, Han X, Chi H, Hou Y, Lodesani A, Yin G, Liu K, Cui Y T, Wang K L, and Moodera J S 2022 Adv. Mater. 34 e2110583 |
[15] | Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, and Zhao J H 2020 Chin. Phys. Lett. 37 077303 |
[16] | Liang D, DeGrave J P, Stolt M J, Tokura Y, and Jin S 2015 Nat. Commun. 6 8217 |
[17] | Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, and Rosch A 2012 Nat. Phys. 8 301 |
[18] | Lim Z S, Li C J, Huang Z, Chi X, Zhou J, Zeng S, Omar G J, Feng Y P, Rusydi A, Pennycook S J, Venkatesan T, and Ariando A 2020 Small 16 e2004683 |
[19] | Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A, and Pfleiderer C 2013 Phys. Rev. B 87 134424 |
[20] | Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 |
[21] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067 |
[22] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patanè A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501 |
[23] | Jin W, Zhang G, Wu H, Yang L, Zhang W, and Chang H 2023 Chin. Phys. Lett. 40 057301 |
[24] | Kimbell G, Kim C, Wu W, Cuoco M, and Robinson J W A 2022 Commun. Mater. 3 19 |
[25] | Tai L X, Dai B Q, Li J, Huang H, Chong S K, Wong K L, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, He H, Wu D, Xu S, Davydov A, Wu R, and Wang K L 2022 ACS Nano 16 17336 |
[26] | Jeon J H, Na H R, Kim H, Lee S, Song S, Kim J, Park S, Kim J, Noh H, Kim G, Jerng S K, and Chun S H 2022 ACS Nano 16 8974 |
[27] | Park T E, Peng L, Liang J, Hallal A, Yasin F S, Zhang X, Song K M, Kim S J, Kim K, Weigand M, Schütz G, Finizio S, Raabe J, Garcia K, Xia J, Zhou Y, Ezawa M, Liu X, Chang J, Koo H C, Kim Y D, Chshiev M, Fert A, Yang H, Yu X, and Woo S 2021 Phys. Rev. B 103 104410 |
[28] | Peng L C, Yasin F S, Park T E, Kim S J, Zhang X, Nagai T, Kimoto K, Woo S, and Yu X 2021 Adv. Funct. Mater. 31 2103583 |
[29] | Wang W B, Zhao Y F, Wang F, Daniels M W, Chang C Z, Zang J, Xiao D, and Wu W 2021 Nano Lett. 21 1108 |
[30] | Sapozhnikov M V, Gusev N S, Gusev S A, Tatarskiy D A, Petrov Y V, Temiryazev A G, and Fraerman A A 2021 Phys. Rev. B 103 054429 |
[31] | Zang J D, Mostovoy M, Han J H, and Nagaosa N 2011 Phys. Rev. Lett. 107 136804 |
[32] | Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 |
[33] | Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M, and Beach G S 2016 Nat. Mater. 15 501 |
[34] | Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, and Chang J 2018 Nat. Commun. 9 959 |
[35] | Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, and Wang K L 2017 Nano Lett. 17 261 |
[36] | Chen G, Mascaraque A, Jia H, Zimmermann B, Robertson M, Conte R L, Hoffmann M, Barrio M A G, Ding H, Wiesendanger R, Michel E G, Blügel S, Schmid A K, and Liu K 2020 Sci. Adv. 6 eaba4924 |
[37] | Arora M, Shaw J M, and Nembach H T 2020 Phys. Rev. B 101 054421 |
[38] | Belabbes A, Bihlmayer G, Blugel S, and Manchon A 2016 Sci. Rep. 6 24634 |
[39] | Kresse G and ller J F 1996 Phys. Rev. B 54 11169 |
[40] | Blöchl P E, Jepsen O, and Andersen O K 1994 Phys. Rev. B 49 16223 |
[41] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[42] | Payne M C, Teter M P, Allan D C, Arias T A, and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 |
[43] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[44] | Grimme S 2006 J. Comput. Chem. 27 1787 |
[45] | Xiang H J, Kan E J, Wei S H, Whangbo M H, and Gong X G 2011 Phys. Rev. B 84 224429 |
[46] | Tang W, Sanville E, and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 |
[47] | Yang H X, Thiaville A, Rohart S, Fert A, and Chshiev M 2015 Phys. Rev. Lett. 115 267210 |
[48] | Yang H X, Liang J H, and Cui Q R 2023 Nat. Rev. Phys. 5 43 |
[49] | Moriya T 1960 Phys. Rev. 120 91 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|