Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 117302    DOI: 10.1088/0256-307X/40/11/117302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals
Jun Hou1,2†, Peng-Tao Yang1,2†, Zi-Yi Liu1,2†, Jing-Yuan Li3†, Peng-Fei Shan1,2, Liang Ma1,4,5, Gang Wang1,2, Ning-Ning Wang1,2, Hai-Zhong Guo4,5, Jian-Ping Sun1,2, Yoshiya Uwatoko6, Meng Wang3*, Guang-Ming Zhang7*, Bo-Sen Wang1,2*, and Jin-Guang Cheng1,2*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
4Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
5Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
6Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
7State Key Laboratory for Low dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Cite this article:   
Jun Hou, Peng-Tao Yang, Zi-Yi Liu et al  2023 Chin. Phys. Lett. 40 117302
Download: PDF(9112KB)   PDF(mobile)(9864KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent report of pressure-induced structural transition and signature of superconductivity with $T_{\rm c}\approx80$ K above 14 GPa in La$_{3}$Ni$_{2}$O$_{7}$ crystals has garnered considerable attention. To further elaborate this discovery, we carried out comprehensive resistance measurements on La$_{3}$Ni$_{2}$O$_{7}$ crystals grown in an optical-image floating zone furnace under oxygen pressure (15 bar) using a diamond anvil cell (DAC) and cubic anvil cell (CAC), which employ a solid (KBr) and liquid (glycerol) pressure-transmitting medium, respectively. Sample 1 measured in the DAC exhibits a semiconducting-like behavior with large resistance at low pressures and gradually becomes metallic upon compression. At pressures $P \geqslant13.7$ GPa we observed the appearance of a resistance drop of as much as $\sim$ 50% around 70 K, which evolves into a kink-like anomaly at pressures above 40 GPa and shifts to lower temperatures gradually with increasing magnetic field. These observations are consistent with the recent report mentioned above. On the other hand, sample 2 measured in the CAC retains metallic behavior in the investigated pressure range up to 15 GPa. The hump-like anomaly in resistance around $\sim$ 130 K at ambient pressure disappears at $P\geqslant2$ GPa. In the pressure range of 11–15 GPa we observed the gradual development of a shoulder-like anomaly in resistance at low temperatures, which evolves into a pronounced drop of resistance of 98% below 62 K at 15 GPa, reaching a temperature-independent resistance of 20 $µ \Omega$ below 20 K. Similarly, this resistance anomaly can be progressively shifted to lower temperatures by applying external magnetic fields, resembling a typical superconducting transition. Measurements on sample 3 in the CAC reproduce the resistance drop at pressures above 10 GPa and realize zero resistance below 10 K at 15 GPa even though an unusual semiconducting-like behavior is retained in the normal state. Based on these results, we constructed a dome-shaped superconducting phase diagram and discuss some issues regarding the sample-dependent behaviors on pressure-induced high-temperature superconductivity in the La$_{3}$Ni$_{2}$O$_{7}$ crystals.
Received: 28 September 2023      Editors' Suggestion Published: 16 October 2023
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.62.Fj (Effects of pressure)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.62.-c (Transition temperature variations, phase diagrams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/117302       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/117302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Hou
Peng-Tao Yang
Zi-Yi Liu
Jing-Yuan Li
Peng-Fei Shan
Liang Ma
Gang Wang
Ning-Ning Wang
Hai-Zhong Guo
Jian-Ping Sun
Yoshiya Uwatoko
Meng Wang
Guang-Ming Zhang
Bo-Sen Wang
and Jin-Guang Cheng
[1] Adler D 1968 Rev. Mod. Phys. 40 714
[2] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3] Bednorz J G and Muller K A 1986 Z. Phys. B 64 189
[4] Anderson P W 1987 Science 235 1196
[5] Lee P A et al. 2006 Rev. Mod. Phys. 78 17
[6] Keimer B et al. 2015 Nature 518 179
[7] Hayward M A et al. 1999 J. Am. Chem. Soc. 121 8843
[8] Boris A V et al. 2011 Science 332 937
[9] Disa A S et al. 2015 Phys. Rev. Lett. 114 026801
[10] Nakata M et al. 2017 Phys. Rev. B 95 214509
[11] Li D F et al. 2019 Nature 572 624
[12] Osada M et al. 2020 Phys. Rev. Mater. 4 121801
[13] Pan G A et al. 2022 Nat. Mater. 21 160
[14] Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109
[15] Sakakibara H et al. 2020 Phys. Rev. Lett. 125 077003
[16] Botana A S and Norman M R 2020 Phys. Rev. X 10 011024
[17] Zhang G M, Yang Y F, and Zhang F C 2020 Phys. Rev. B 101 020501
[18] Wang N N et al. 2022 Nat. Commun. 13 4367
[19] Sun H et al. 2023 Nature 621 493
[20] Zhang Z, Greenblatt M, and Goodenough J B 1994 J. Solid State Chem. 108 402
[21] Yoshiaki K et al. 1996 J. Phys. Soc. Jpn. 65 3978
[22] Taniguchi S et al. 1995 J. Phys. Soc. Jpn. 64 1644
[23] Greenblatt M et al. 2007 Synth. Met. 85 1451
[24] Liu Z J et al. 2023 Sci. Chin. Phys. Mech. & Astron. 66 217411
[25] Hosoya T et al. 2008 J. Phys.: Conf. Ser. 121 052013
[26] Cheng J G et al. 2018 Chin. Phys. B 27 077403
[27] Wu G Q et al. 2001 Phys. Rev. B 63 245120
[28] Zhang J J et al. 2020 Phys. Rev. Mater. 4 083402
Related articles from Frontiers Journals
[1] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 117302
[2] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 117302
[3] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 117302
[4] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 117302
[5] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 117302
[6] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 117302
[7] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 117302
[8] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 117302
[9] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 117302
[10] Bing Huang. What Are the Roles of Hydrogen in Infinite-Layer Nickelates?[J]. Chin. Phys. Lett., 2023, 40(5): 117302
[11] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 117302
[12] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 117302
[13] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 117302
[14] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 117302
[15] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 117302
Viewed
Full text


Abstract