CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Anomalous Thermal Transport across the Superionic Transition in Ice |
Rong Qiu1,2, Qiyu Zeng1,2, Han Wang3, Dongdong Kang1,2, Xiaoxiang Yu1,2*, and Jiayu Dai1,2* |
1Department of Physics, National University of Defense Technology, Changsha 410073, China 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China 3Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
|
|
Cite this article: |
Rong Qiu, Qiyu Zeng, Han Wang et al 2023 Chin. Phys. Lett. 40 116301 |
|
|
Abstract Superionic ices with highly mobile protons within stable oxygen sub-lattices occupy an important proportion of the phase diagram of ice and widely exist in the interior of icy giants and throughout the Universe. Understanding the thermal transport in superionic ice is vital for the thermal evolution of icy planets. However, it is highly challenging due to the extreme thermodynamic conditions and dynamical nature of protons, beyond the capability of the traditional lattice dynamics and empirical potential molecular dynamics approaches. By utilizing the deep potential molecular dynamics approach, we investigate the thermal conductivity of ice-VII and superionic ice-VII$''$ along the isobar of $P = 30$ GPa. A non-monotonic trend of thermal conductivity with elevated temperature is observed. Through heat flux decomposition and trajectory-based spectra analysis, we show that the thermally activated proton diffusion in ice-VII and superionic ice-VII$''$ contribute significantly to heat convection, while the broadening in vibrational energy peaks and significant softening of transverse acoustic branches lead to a reduction in heat conduction. The competition between proton diffusion and phonon scattering results in anomalous thermal transport across the superionic transition in ice. This work unravels the important role of proton diffusion in the thermal transport of high-pressure ice. Our approach provides new insights into modeling the thermal transport and atomistic dynamics in superionic materials.
|
|
Received: 19 September 2023
Express Letter
Published: 06 November 2023
|
|
PACS: |
63.20.kg
|
(Phonon-phonon interactions)
|
|
|
|
|
[1] | Prakapenka V B, Holtgrewe N, Lobanov S S, and Goncharov A F 2021 Nat. Phys. 17 1233 |
[2] | Kang D D, Dai J Y, Sun H Y, Hou Y, and Yuan J M 2013 Sci. Rep. 3 3272 |
[3] | Bernal J D and Fowler R H 1933 J. Chem. Phys. 1 515 |
[4] | Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M, and Parrinello M 1999 Science 283 44 |
[5] | Schwegler E, Sharma M, Gygi F, and Galli G 2008 Proc. Natl. Acad. Sci. USA 105 14779 |
[6] | Hernandez J A and Caracas R 2016 Phys. Rev. Lett. 117 135503 |
[7] | Hernandez J A and Caracas R 2018 J. Chem. Phys. 148 214501 |
[8] | Queyroux J A, Hernandez J A, Weck G, Ninet S, Plisson T, Klotz S, Garbarino G, Guignot N, Mezouar M, Hanfland M, Itié J P, and Datchi F 2020 Phys. Rev. Lett. 125 195501 |
[9] | Andersson O and Inaba A 2005 Phys. Chem. Chem. Phys. 7 1441 |
[10] | Chen B, Hsieh W P, Cahill D G, Trinkle D R, and Li J 2011 Phys. Rev. B 83 132301 |
[11] | Qiu R, Yu X X, Wang D, Zhang S, Kang D D, and Dai J Y 2021 ACS Appl. Nano Mater. 4 10665 |
[12] | Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, and Yang N 2021 Chin. Phys. Lett. 38 014401 |
[13] | Wang Y, Yu X X, Wan X, Yang N, and Deng C C 2021 Chin. Phys. Lett. 38 094401 |
[14] | Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z, Wang T, Wei T, Liu Z, Du J, Chen J, and Gao P 2023 Chin. Phys. Lett. 40 036801 |
[15] | Grasselli F, Stixrude L, and Baroni S 2020 Nat. Commun. 11 3605 |
[16] | Zhang L F, Han J Q, Wang H, Car R, and E W N 2018 Phys. Rev. Lett. 120 143001 |
[17] | Ouyang Y L, Zhang Z W, Yu C Q, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301 |
[18] | Chen B, Zeng Q, Wang H, Kang D, Dai J, and Ng A 2021 arXiv:2006.13136 [cond-mat.mtrl-sci] |
[19] | Zeng Q Y, Yu X X, Yao Y P, Gao T Y, Chen B, Zhang S, Kang D D, Wang H, and Dai J Y 2021 Phys. Rev. Res. 3 033116 |
[20] | Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, and Dai J Y 2022 Chin. Phys. Lett. 39 116301 |
[21] | Chen B, Zeng Q, Yu X, Chen J, Zhang S, Kang D, and Dai J 2022 arXiv:2208.01830 [astro-ph.EP] |
[22] | Han J, Zeng Q, Chen K, Yu X, and Dai J 2023 Nanomaterials 13 1576 |
[23] | Zhang L F, Wang H, Car R, and E W N 2021 Phys. Rev. Lett. 126 236001 |
[24] | Zhang C Z, Puligheddu M, Zhang L F, Car R, and Galli G 2023 J. Phys. Chem. B 127 7011 |
[25] | Malosso C, Zhang L F, Car R, Baroni S, and Tisi D 2022 npj Comput. Mater. 8 139 |
[26] | Wang H, Zhang L F, Han J Q, and E W N 2018 Comput. Phys. Commun. 228 178 |
[27] | Zeng J Z, Zhang D, Lu D H, Mo P H, Li Z Y, Chen Y X, Rynik M, Huang L, Li Z, Shi S, Wang Y, Ye H, Tuo P, Yang J, Ding Y, Li Y, Tisi D, Zeng Q, Bao H, Xia Y, Huang J, Muraoka K, Wang Y, Chang J, Yuan F, Bore S L, Cai C, Lin Y, Wang B, Xu J, Zhu J X, Luo C, Zhang Y, Goodall R E A, Liang W, Singh A K, Yao S, Zhang J, Wentzcovitch R, Han J, Liu J, Jia W, York D M, E W N, Car R, Zhang L, and Wang H 2023 J. Chem. Phys. 159 054801 |
[28] | Green M S 1952 J. Chem. Phys. 20 1281 |
[29] | Kubo R 1957 J. Phys. Soc. Jpn. 12 570 |
[30] | Plimpton S 1995 J. Comput. Phys. 117 1 |
[31] | Nosé S 1984 J. Chem. Phys. 81 511 |
[32] | Hoover W G 1985 Phys. Rev. A 31 1695 |
[33] | Yu X X, Li R Y, Shiga T, Feng L, An M, Zhang L F, Shiomi J, and Yang N 2019 J. Phys. Chem. C 123 26735 |
[34] | Roufosse M and Klemens P G 1973 Phys. Rev. B 7 5379 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|