CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Energy Landscape and Phase Competition of CsV$_{3}$Sb$_{5}$, CsV$_{6}$Sb$_{6}$ and TbMn$_{6}$Sn$_{6}$-Type Kagome Materials |
Guanghui Cai1,2†, Yutao Jiang1,2†, Hui Zhou1,2, Ze Yu1,2, Kun Jiang1, Youguo Shi1, Sheng Meng1,2,3*, and Miao Liu1,3,4* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Guanghui Cai, Yutao Jiang, Hui Zhou et al 2023 Chin. Phys. Lett. 40 117101 |
|
|
Abstract Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials. In this study, we performed element substitutions on CsV$_{3}$Sb$_{5}$ with space group $P6/mmm$, TbMn$_{6}$Sn$_{6}$ with space group $P6/mmm$, and CsV$_{6}$Sb$_{6}$ with space group $R\bar{3}m$, as the parent compounds. Totally 4158 materials were obtained through element substitutions, and these materials were then calculated via density functional theory in high-throughput mode. Afterwards, 48 materials were identified with high thermodynamic stability ($E_{\rm{hull}} < 5$ meV/atom). Furthermore, we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis. Finally, by calculating the electronic structures of these materials, we attempted to identify patterns in the electronic structure variations as the elements change. This study provides guidance for discovering promising AM$_{3}$X$_{5}$/AM$_{6}$X$_{6}$ Kagome materials from a vast phase space.
|
|
Received: 24 August 2023
Editors' Suggestion
Published: 02 November 2023
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] | Syozi I 1951 Prog. Theor. Phys. 6 306 |
[2] | Nocera D G, Bartlett B M, Grohol D, Papoutsakis D, and Shores M P 2004 Chem. - Eur. J. 10 3850 |
[3] | Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, and Khasanov R 2023 Nat. Commun. 14 153 |
[4] | Wu Z and Wang Y 2022 Phys. Rev. B 106 214510 |
[5] | Zhang X, Jin L, Dai X, and Liu G 2017 J. Phys. Chem. Lett. 8 4814 |
[6] | Zhang Q, Zhang Y P, Matsuda M, Garlea V O, Yan J Q, McGuire M A, Tennant D A and Okamoto S 2022 J. Am. Chem. Soc. 144 14339 |
[7] | Zhou H, Liu H, Ji H Y, Li X, Meng S, and Sun J T 2023 npj Quantum Mater. 8 16 |
[8] | Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y, and Felser C 2021 Phys. Rev. B 103 144410 |
[9] | Liu E K, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125 |
[10] | Zhao Y, Nie Z W, Hong H, Qiu X, Han S Y, Yu Y, Liu M X, Qiu X H, Liu K H, Meng S, Tong L, and Zhang J 2023 Nat. Commun. 14 2223 |
[11] | Teng X K, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M, and Dai P 2022 Nature 609 490 |
[12] | Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 46401 |
[13] | Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, and Wang S 2021 Nat. Commun. 12 3129 |
[14] | Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X, Hu J, Gao H J, and Zhao Z 2021 Chin. Phys. Lett. 38 057403 |
[15] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 |
[16] | Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002 |
[17] | Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216 |
[18] | Zheng G, Tan C, Chen Z, Wang M, Zhu X, Albarakati S, Algarni M, Partridge J, Farrar L, Zhou J, Ning W, Tian M, Fuhrer M S, and Wang L 2023 Nat. Commun. 14 678 |
[19] | Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X, and Hu J 2023 Natl. Sci. Rev. 10 nwac199 |
[20] | Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353 |
[21] | Yang Y, Fan W, Zhang Q, Chen Z, Chen X, Ying T, Wu X, Yang X, Meng F, Li G, Li S, Gu L, Qian T, Schnyder A P, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 127102 |
[22] | Li R S, Zhang T, Ma W, Xu S X, Wu Q, Yue L, Zhang S J, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Wu D, Dong T, Jia S, Weng H, and Wang N L 2023 Phys. Rev. B 107 045115 |
[23] | Jones D C, Das S, Bhandari H, Liu X, Siegfried P, Ghimire M P, Tsirkin S S, Mazin I I, and Ghimire N J 2022 arXiv:2203.17246 [cond-mat.str-el] |
[24] | Wenzel M, Tsirlin A A, Iakutkina O, Yin Q, Lei H C, Dressel M, and Uykur E 2022 Phys. Rev. B 106 L241108 |
[25] | Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, and Persson K A 2015 Energy & Environ. Sci. 8 964 |
[26] | Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, and Persson K A 2016 Energy & Environ. Sci. 9 3201 |
[27] | Sun W, Bartel C J, Arca E, Bauers S R, Matthews B, Orvañanos B, Chen B R, Toney M F, Schelhas L T, Tumas W, Tate J, Zakutayev A, Lany S, Holder A M, and Ceder G 2019 Nat. Mater. 18 732 |
[28] | Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, and Liu M 2022 Chin. Phys. Lett. 39 047402 |
[29] | Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15 |
[30] | Kresse G and Furthmu J 1996 Phys. Rev. B 54 11169 |
[31] | Blöchl P E Phys. Rev. B 50 17953 |
[32] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[33] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[34] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[35] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Jain A, Ong P, Hautier G, Chen W, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002 |
[36] | Esters M, Oses C, Divilov S, Eckert H, Friedrich R, Hicks D, Mehl M J, Rose F, Smolyanyuk A, Calzolari A, Campilongo X, Toher C, and Curtarolo S 2023 Comput. Mater. Sci. 216 111808 |
[37] | Liu M and Meng S 2023 Sci. Sin. Chim. 53 19 |
[38] | Xie F, Lu T, Yu Z, Wang Y, Wang Z, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 057401 |
[39] | Liang Y, Chen M, Wang Y, Jia H, Lu T, Xie F, Cai G, Wang Z, Meng S, and Liu M 2023 Sci. Chin. Mater. 66 343 |
[40] | Lu T, Wang Y, Cai G, Jia H, Liu X, Zhang C, Meng S, and Liu M 2023 Mater. Futures 2 015001 |
[41] | Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A, and Ceder G 2011 Phys. Rev. B 84 045115 |
[42] | Ong S P, Jain A, Hautier G, Kang B, and Ceder G 2010 Electrochem. Commun. 12 427 |
[43] | Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225 |
[44] | Barber C B, Dobkin D P, and Huhdanpaa H 1996 ACM Trans. Math. Software 22 469 |
[45] | Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403 |
[46] | Yang Y, Wang R, Shi M Z, Wang Z, Xiang Z, and Chen X H 2021 Phys. Rev. B 104 245128 |
[47] | E Welk H-U S 2006 Z. Anorg. Allg. Chem. 632 1917 |
[48] | Buchholz W and Schuster H U 1978 Z. Naturforsch. B 33 877 |
[49] | Yang H, Zhao Z, Yi X W, Liu J, You J Y, Zhang Y, Guo H, Lin X, Shen C, Chen H, Dong X, Su G, and Gao H J 2022 arXiv:2209.03840 [cond-mat.supr-con] |
[50] | Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R, and Johrendt D 2022 Z. Naturforsch. B 77 757 |
[51] | Li X, Xu X, Zhou H, Jia H, Wang E, Fu H, Sun J T, and Meng S 2023 Nano Lett. 23 2839 |
[52] | Yin Q, Tu Z, Gong C, Tian S, and Lei H 2021 Chin. Phys. Lett. 38 127401 |
[53] | Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y, Li G, Lei H, Li J, Chen Y, Yan S, and Qi Y 2021 Adv. Mater. 33 2102813 |
[54] | Van Hove L 1953 Phys. Rev. 89 1189 |
[55] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H, and Hasan M Z 2015 Nat. Commun. 6 7373 |
[56] | Qin S, Zhang Z, Wang Y, Fang C, Zhang F, and Hu J 2022 arXiv:2208.10225 [cond-mat.supr-con] |
[57] | Wu Z and Wang Y 2023 arXiv:2309.03285 [cond-mat.supr-con] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|