Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 113201    DOI: 10.1088/0256-307X/40/11/113201
ATOMIC AND MOLECULAR PHYSICS |
Chirp Compensation for Generating Ultrashort Attosecond Pulses with 800-nm Few-Cycle Pulses
Li Wang1,2, Xiaowei Wang1,2*, Fan Xiao1,2, Jiacan Wang1,2, Wenkai Tao1,2, Dongwen Zhang1,2, and Zengxiu Zhao1,2*
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Li Wang, Xiaowei Wang, Fan Xiao et al  2023 Chin. Phys. Lett. 40 113201
Download: PDF(4235KB)   PDF(mobile)(4240KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that it is feasible to generate sub-40-attosecond pulses with near-infrared few-cycle pulses centered at 800 nm. With proper gating technique, super-broadband continuum spectrum extending from 50 eV to above 200 eV can be obtained, and the intrinsic atto-chirp can be satisfactorily compensated with C filter, producing isolated attosecond pulses with duration of 33 as. According to the wavelength scaling law of high-order harmonic generation, the proposed scheme is of great significance to develop high-flux ultrashort attosecond sources.
Received: 19 September 2023      Editors' Suggestion Published: 13 November 2023
PACS:  32.30.Rj (X-ray spectra)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  32.80.Fb (Photoionization of atoms and ions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/113201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/113201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Wang
Xiaowei Wang
Fan Xiao
Jiacan Wang
Wenkai Tao
Dongwen Zhang
and Zengxiu Zhao
[1] Sansone G, Calegari F, and Nisoli M 2012 IEEE J. Sel. Top. Quantum Electron. 18 507
[2] Krausz F and Stockman M I 2014 Nat. Photonics 8 205
[3] Krausz F 2016 Phys. Scr. 91 063011
[4] Zhao J, Liu J, Wang X, Yuan J, and Zhao Z 2022 Chin. Phys. Lett. 39 123201
[5] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891
[6] Wang X W, Wang L, Xiao F, Zhang D W, Lue Z, Yuan J, Zhao Z, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[7] Yang Y D, Mainz R E, Rossi G M, Scheiba F, Silva-Toledo M A, Keathley P D, Cirmi G, and Kärtner F X 2021 Nat. Commun. 12 6641
[8] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H, and Yang W F 2021 Chin. Phys. Lett. 38 063201
[9] Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201
[10] Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202
[11] Yin Y C, Li J, Ren X M, Zhao K, Wu Y, Cunningham E, and Chang Z H 2016 Opt. Lett. 41 1142
[12] Ren X M, Mach L H, Yin Y C, Wang Y, and Chang Z H 2018 Opt. Lett. 43 3381
[13] Wu Y, Zhou F, Larsen E W, Zhuang F, Yin Y, and Chang Z 2020 Sci. Rep. 10 7775
[14] Gu X B, Liu J S, Yuan P, Tu X H, Zhang D F, Wang J, Xie G Q, and Ma J Q 2022 Opt. Lett. 47 5244
[15] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287
[16] Chen M C, Mancuso C, Hernández-García C, Dollar F, Galloway B, Popmintchev D, Huang P C, Walker B, Plaja L, Jaroń-Becker A A, Becker A, Murnane M M, Kapteyn H C, and Popmintchev T 2014 Proc. Natl. Acad. Sci. USA 111 E2361
[17] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, and Chang Z H 2017 Nat. Commun. 8 186
[18] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, and Wörner H J 2017 Opt. Express 25 27506
[19] Frolov M V, Manakov N L, Xiong W H, Peng L Y, Burgdörfer J, and Starace A F 2015 Phys. Rev. A 92 023409
[20] Emelina A S, Emelin M Y, and Ryabikin M Y 2019 J. Opt. Soc. Am. B 36 3236
[21] Arpin P, Popmintchev T, Wagner N L, Lytle A L, Cohen O, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 103 143901
[22] Gao J x, Wu J q, Lou Z Y, Yang F, Qian J Y, Peng Y J, Leng Y X, Zheng Y H, Zeng Z N, and Li R X 2022 Optica 9 1003
[23] Oguri K, Mashiko H, Ogawa T, Hanada Y, Nakano H, and Gotoh H 2018 Appl. Phys. Lett. 112 181105
[24] Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S, and Chang Z 2009 Opt. Lett. 34 3337
[25] Mashiko H, Oguri K, Sogawa T, Mashiko H, Oguri K, and Sogawa T 2009 Appl. Phys. Lett. 102 171111
[26] Ko D H, Kim K T, and Nam C H 2012 J. Phys. B 45 074015
[27] Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Phys. Rev. A 69 051805
[28] Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Appl. Phys. B 79 563
[29] Chang Z H 2018 Opt. Express 26 33238
[30] Chang Z H 2019 OSA Continuum 2 314
[31] Henke B L, Gullikson E M, and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[32] Han S, Zhao K, and Chang Z 2022 Sensors 22 7513
[33] Corkum P B, Burnett N H, and Ivanov M Y 1994 Opt. Lett. 19 1870
[34] Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G, and Nisoli M 2006 Nat. Phys. 2 319
[35] Chang Z H 2004 Phys. Rev. A 70 043802
[36] Strelkov V, Zair A, Tcherbakoff O, Lopez-Martens R, Cormier E, Mevel E, and Constant E 2004 Appl. Phys. B 78 879
[37] Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G, and Chang Z 2012 Phys. Rev. A 86 011401
[38] Wang X W, Chini M, Cheng Y, Wu Y, Tong X M, and Chang Z H 2013 Phys. Rev. A 87 063413
[39] Hermann M R and Fleck J A J 1988 Phys. Rev. A 38 6000
[40] Tong X M and Chu S I 1997 Chem. Phys. 217 119
Related articles from Frontiers Journals
[1] Quan-Wei Nan, Chao Wang, Xin-Yue Yu, Xi Zhao, Yongjun Cheng, Maomao Gong, Xiao-Jing Liu, Victor Kimberg, and Song-Bin Zhang. Resonant Auger Scattering by Attosecond X-Ray Pulses[J]. Chin. Phys. Lett., 2023, 40(9): 113201
[2] Wenkai Tao, Li Wang, Pan Song, Fan Xiao, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang, and Zengxiu Zhao. Enhanced Extreme Ultraviolet Free Induction Decay Emission Assisted by Attosecond Pulses[J]. Chin. Phys. Lett., 2023, 40(6): 113201
[3] Xiaowei Wang, Li Wang, Fan Xiao, Dongwen Zhang, Zhihui Lü, Jianmin Yuan, Zengxiu Zhao. Generation of 88as Isolated Attosecond Pulses with Double Optical Gating[J]. Chin. Phys. Lett., 2020, 37(2): 113201
[4] WANG Hong-Chao, HE Yi-Ting, SUN Hua-Yang, QIU Zhi-Ren, XIE Deng, MEI Ting, Tin C. C., FENG Zhe-Chuan. Temperature Dependence of Raman Scattering in 4H-SiC Films under Different Growth Conditions[J]. Chin. Phys. Lett., 2015, 32(4): 113201
[5] MA Kun, DONG Chen-Zhong, XIE Lu-You, QU Yi-Zhi. Polarization Transfer in the 2p3/2 Photoionization of Magnesium-Like Ions[J]. Chin. Phys. Lett., 2014, 31(10): 113201
[6] MA Kun, DONG Chen-Zhong, XIE Lu-You, DING Xiao-Bin, QU Yi-Zhi. Polarization and Angular Distribution of L? X-Ray Following Inner-Shell 2p3/2 Photoionization of Magnesium-Like Ions[J]. Chin. Phys. Lett., 2014, 31(05): 113201
[7] ZHAN Min-Jie, YE Peng, TENG Hao, HE Xin-Kui, ZHANG Wei, ZHONG Shi-Yang, WANG Li-Feng, YUN Chen-Xia, WEI Zhi-Yi. Generation and Measurement of Isolated 160-Attosecond XUV Laser Pulses at 82 eV[J]. Chin. Phys. Lett., 2013, 30(9): 113201
[8] SHI Ying-Long, DONG Chen-Zhong, MA Xiao-Yun, WU Zhong-Wen, XIE Lu-You, FRITZSCHE Stephan. Polarization of M2 Line Emitted Following Electron-Impact Excitation of Beryllium-Like Ions[J]. Chin. Phys. Lett., 2013, 30(6): 113201
[9] SHI Ying-Long, DONG Chen-Zhong, FRITZSCHE Stephan, ZHANG Deng-Hong, XIE Lu-You. Theory of X-Ray Anisotropy and Polarization Following the Dielectronic Recombination of Initially Hydrogen-Like Ions[J]. Chin. Phys. Lett., 2013, 30(2): 113201
[10] ZHAO Yang, ZHU Tuo, WEI Min-Xi, XIONG Gang, SONG Tian-Ming, HU Zhi-Min, HUANG Cheng-Wu, SHANG Wan-Li, YANG Guo-Hong, ZHANG Ji-Yan, and YANG Jia-Min. K-Shell Spectra from CH Foam Tamped Ti Layers Irradiated with Nanosecond Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(8): 113201
[11] YANG Zhao-Rui, YUAN Ping**, SONG Zhang-Yong, XU Qiu-Mei, YANG Zhi-Hu. Measurements of the Spectrum of Singly Ionized Argon between 320 and 520 nm[J]. Chin. Phys. Lett., 2012, 29(1): 113201
[12] ZHAO Yang**, DENG Bo, XIONG Gang, HU Zhi-Min, WEI Min-Xi, ZHU Tuo, SHANG Wan-Li, LI Jun, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min . Space-Resolved Diagnosis for Electron Temperature of Laser-Produced Aluminum Plasma[J]. Chin. Phys. Lett., 2011, 28(6): 113201
[13] ZHAO Yang**, SHANG Wan-Li, XIONG Gang, JIN Feng-Tao, HU Zhi-Min, WEI Min-Xi, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min. Time-Resolved Measurement of Radiatively Heated Iron 2p-3d Transmission Spectra[J]. Chin. Phys. Lett., 2010, 27(11): 113201
[14] TENG Hao, YUN Chen-Xia, ZHU Jiang-Feng, HAN Hai-Nian, ZHONG Xin, ZHANG Wei, HOU Xun, WEI Zhi-Yi. Generation of Continuum Extreme-Ultraviolet Radiation by Carrier-Envelope-Phase-Stabilized 5-fs Laser Pulses[J]. Chin. Phys. Lett., 2009, 26(11): 113201
[15] YANG Zhi-Hu, DU Shu-Bin, CHANG Hong-Wei, XUE Ying-Li, SONG Zhang-Yong, ZHANG Bo-Li, ZHU Ke-Xin, YU De-Yang, CAI Xiao Hong. Measurement of 16O5+ Induced L X-Ray Production Cross Sections for Gold[J]. Chin. Phys. Lett., 2009, 26(10): 113201
Viewed
Full text


Abstract