ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Chirp Compensation for Generating Ultrashort Attosecond Pulses with 800-nm Few-Cycle Pulses |
Li Wang1,2, Xiaowei Wang1,2*, Fan Xiao1,2, Jiacan Wang1,2, Wenkai Tao1,2, Dongwen Zhang1,2, and Zengxiu Zhao1,2* |
1Department of Physics, National University of Defense Technology, Changsha 410073, China 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
|
|
Cite this article: |
Li Wang, Xiaowei Wang, Fan Xiao et al 2023 Chin. Phys. Lett. 40 113201 |
|
|
Abstract We show that it is feasible to generate sub-40-attosecond pulses with near-infrared few-cycle pulses centered at 800 nm. With proper gating technique, super-broadband continuum spectrum extending from 50 eV to above 200 eV can be obtained, and the intrinsic atto-chirp can be satisfactorily compensated with C filter, producing isolated attosecond pulses with duration of 33 as. According to the wavelength scaling law of high-order harmonic generation, the proposed scheme is of great significance to develop high-flux ultrashort attosecond sources.
|
|
Received: 19 September 2023
Editors' Suggestion
Published: 13 November 2023
|
|
PACS: |
32.30.Rj
|
(X-ray spectra)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
|
|
|
[1] | Sansone G, Calegari F, and Nisoli M 2012 IEEE J. Sel. Top. Quantum Electron. 18 507 |
[2] | Krausz F and Stockman M I 2014 Nat. Photonics 8 205 |
[3] | Krausz F 2016 Phys. Scr. 91 063011 |
[4] | Zhao J, Liu J, Wang X, Yuan J, and Zhao Z 2022 Chin. Phys. Lett. 39 123201 |
[5] | Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891 |
[6] | Wang X W, Wang L, Xiao F, Zhang D W, Lue Z, Yuan J, Zhao Z, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 |
[7] | Yang Y D, Mainz R E, Rossi G M, Scheiba F, Silva-Toledo M A, Keathley P D, Cirmi G, and Kärtner F X 2021 Nat. Commun. 12 6641 |
[8] | Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H, and Yang W F 2021 Chin. Phys. Lett. 38 063201 |
[9] | Lang Y, Peng Z Y, and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 |
[10] | Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202 |
[11] | Yin Y C, Li J, Ren X M, Zhao K, Wu Y, Cunningham E, and Chang Z H 2016 Opt. Lett. 41 1142 |
[12] | Ren X M, Mach L H, Yin Y C, Wang Y, and Chang Z H 2018 Opt. Lett. 43 3381 |
[13] | Wu Y, Zhou F, Larsen E W, Zhuang F, Yin Y, and Chang Z 2020 Sci. Rep. 10 7775 |
[14] | Gu X B, Liu J S, Yuan P, Tu X H, Zhang D F, Wang J, Xie G Q, and Ma J Q 2022 Opt. Lett. 47 5244 |
[15] | Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287 |
[16] | Chen M C, Mancuso C, Hernández-García C, Dollar F, Galloway B, Popmintchev D, Huang P C, Walker B, Plaja L, Jaroń-Becker A A, Becker A, Murnane M M, Kapteyn H C, and Popmintchev T 2014 Proc. Natl. Acad. Sci. USA 111 E2361 |
[17] | Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, and Chang Z H 2017 Nat. Commun. 8 186 |
[18] | Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, and Wörner H J 2017 Opt. Express 25 27506 |
[19] | Frolov M V, Manakov N L, Xiong W H, Peng L Y, Burgdörfer J, and Starace A F 2015 Phys. Rev. A 92 023409 |
[20] | Emelina A S, Emelin M Y, and Ryabikin M Y 2019 J. Opt. Soc. Am. B 36 3236 |
[21] | Arpin P, Popmintchev T, Wagner N L, Lytle A L, Cohen O, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 103 143901 |
[22] | Gao J x, Wu J q, Lou Z Y, Yang F, Qian J Y, Peng Y J, Leng Y X, Zheng Y H, Zeng Z N, and Li R X 2022 Optica 9 1003 |
[23] | Oguri K, Mashiko H, Ogawa T, Hanada Y, Nakano H, and Gotoh H 2018 Appl. Phys. Lett. 112 181105 |
[24] | Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S, and Chang Z 2009 Opt. Lett. 34 3337 |
[25] | Mashiko H, Oguri K, Sogawa T, Mashiko H, Oguri K, and Sogawa T 2009 Appl. Phys. Lett. 102 171111 |
[26] | Ko D H, Kim K T, and Nam C H 2012 J. Phys. B 45 074015 |
[27] | Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Phys. Rev. A 69 051805 |
[28] | Kim K T, Kim C M, Baik M G, Umesh G, and Nam C H 2004 Appl. Phys. B 79 563 |
[29] | Chang Z H 2018 Opt. Express 26 33238 |
[30] | Chang Z H 2019 OSA Continuum 2 314 |
[31] | Henke B L, Gullikson E M, and Davis J C 1993 At. Data Nucl. Data Tables 54 181 |
[32] | Han S, Zhao K, and Chang Z 2022 Sensors 22 7513 |
[33] | Corkum P B, Burnett N H, and Ivanov M Y 1994 Opt. Lett. 19 1870 |
[34] | Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G, and Nisoli M 2006 Nat. Phys. 2 319 |
[35] | Chang Z H 2004 Phys. Rev. A 70 043802 |
[36] | Strelkov V, Zair A, Tcherbakoff O, Lopez-Martens R, Cormier E, Mevel E, and Constant E 2004 Appl. Phys. B 78 879 |
[37] | Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G, and Chang Z 2012 Phys. Rev. A 86 011401 |
[38] | Wang X W, Chini M, Cheng Y, Wu Y, Tong X M, and Chang Z H 2013 Phys. Rev. A 87 063413 |
[39] | Hermann M R and Fleck J A J 1988 Phys. Rev. A 38 6000 |
[40] | Tong X M and Chu S I 1997 Chem. Phys. 217 119 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|