FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Mechanical Characterization of Broadband Achromatic Optical Vortex Metalens |
Zhechun Lu1, Yuehua Deng1, Yang Yu1*, Chengzhi Huang2, and Junbo Yang1 |
1College of Science, National University of Defense Technology, Changsha 410073, China 2Key Laboratory of Luminescence Analysisand Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
|
|
Cite this article: |
Zhechun Lu, Yuehua Deng, Yang Yu et al 2023 Chin. Phys. Lett. 40 114201 |
|
|
Abstract Metalenses, which may effectively manipulate the wavefront of incident light, have been proposed and extensively utilized in the development of various planar optical devices for specialized purposes. However, similar to traditional lenses, the metalens suffers from chromatic aberration problems due to the significant phase dispersion in each unit structure and the limited operational bandwidth. To mitigate the impact of chromatic aberration, we integrate a phase compensation approach with a novel utilization of a phase shift function to define the adjusted phase criterion satisfied by each $\alpha$-Si resonance unit. This approach may lead to development of an innovative optical tweezer known as an achromatic optical vortex metalens (AOVM), offering reliable focusing capabilities across the $1300$ nm and $1600$ nm incident light range. Numerical simulations are conducted to investigate the optical properties of $200$ nm diameter SiO$_{2}$ particles at the focal plane of the AOVM. The trapping ability of the AOVM is successfully validated, exhibiting favorable characteristics including constant optical force, stable kinematic state of trapped particles, and consistent capture positions, surpassing those of the optical vortex metalens.
|
|
Received: 21 August 2023
Published: 16 October 2023
|
|
PACS: |
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
42.82.Gw
|
(Other integrated-optical elements and systems)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
|
|
|
[1] | Ashkin A 1970 Phys. Rev. Lett. 24 156 |
[2] | Ashkin A, Dziedzic J M, Bjorkholm J E, and Chu S 1986 Opt. Lett. 11 288 |
[3] | Choudhary D, Mossa A, Jadhav M, and Cecconi C 2019 Biomolecules 9 23 |
[4] | Baker J E, Badman R P, and Wang M D 2018 WIREs Nanomed. Nanobiotechnol. 10 e1477 |
[5] | Estéve J 2013 Nat. Nanotechnol. 8 317 |
[6] | Hu J, Bandyopadhyay S, Liu Y, and Shao L 2021 Front. Phys. 8 586087 |
[7] | Yuan Q, Ge Q, Chen L, Zhang Y, Yang Y, Cao X, Wang S, Zhu S, and Wang Z 2023 Nanophotonics 12 2295 |
[8] | Kazanskiy N L, Khonina S N, and Butt M A 2022 Nanomaterials 13 118 |
[9] | Li A B, Singh S, and Sievenpiper D 2018 Nanophotonics 7 989 |
[10] | Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I, and Cummer S A 2014 Nat. Commun. 5 5553 |
[11] | Yu N F and Capasso F 2014 Nat. Mater. 13 139 |
[12] | Yang J Y, Gurung S, Bej S, Ni P, and Howard L H W 2022 Rep. Prog. Phys. 85 036101 |
[13] | Wang W, Yang Q, He S, Shi Y, Liu X, Sun J, Guo K, Wang L, and Guo Z 2021 Opt. Express 29 43270 |
[14] | Jin Z W, Janoschka D, Deng J H, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu C, Lei D, Li G, Xiao S, Mei S, Giessen H, zu H F M, and Qiu C W 2021 eLight 1 5 |
[15] | Wang W, Guo C, Zhao Z, Li J, and Shi Y 2020 Results Phys. 17 103033 |
[16] | Kuo H Y, Vyas S, Chu C H, Chen M K, Shi X, Misawa H, Lu Y J, Luo Y, and Tsai D P 2021 Nanomaterials 11 1730 |
[17] | Markovich H, Shishkin I I, Hendler N, and Ginzburg P 2018 Nano Lett. 18 5024 |
[18] | Suwannasopon S, Meyer F, Schlickriede C, Chaisakul P, T-Thienprasert J, Limtrakul J, Zentgraf T, and Chattham N 2019 Crystals 9 515 |
[19] | Wang X Y, Dai Y M, Zhang Y Q, Min C J, and Yuan X C 2018 ACS Photon. 5 2945 |
[20] | Peng M, Luo H, Zhang Z J, Kuang T F, Chen D B, Bai W, Chen Z J, Yang J B, and Xiao G Z 2021 Nanomaterials 11 3376 |
[21] | Ng J, Lin Z, and Chan C T 2010 Phys. Rev. Lett. 104 103601 |
[22] | Mei S T, Huang K, Zhang T H, Mehmood M Q, Liu H, Lim C T, Teng J H, and Qiu C W 2016 Appl. Phys. Lett. 109 191107 |
[23] | Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901 |
[24] | Ruffner D B and Grier D G 2012 Phys. Rev. Lett. 108 173602 |
[25] | Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, and Maragó O M 2009 ACS Nano 3 3077 |
[26] | Friese M E J, Nieminen T A, Heckenberg N R, and Rubinsztein-Dunlop H 1998 Nature 394 348 |
[27] | Zhao C L and Cai Y J 2011 Opt. Lett. 36 2251 |
[28] | Mahmood N, Kim J, Naveed M A, Kim Y, Seong J, Kim S, Badloe T, Zubair M, Mehmood M Q, Massoud Y, and Rho J 2023 Nano Lett. 23 1195 |
[29] | Shen Z, Xiang Z, Wang Z, Shen Y, and Zhang B 2021 Appl. Opt. 60 4820 |
[30] | Zheng C L, Li J, Wang G C, Wang S L, Li J T, Zhao H L, Zang H P, Zhang Y, Zhang Y T, and Yao J Q 2021 Nanoscale 13 5809 |
[31] | Ma Y B, Rui G H, Gu B, and Cui Y P 2017 Sci. Rep. 7 14611 |
[32] | Li T Y, Xu X H, Fu B Y, Wang S M, Li B J, Wang Z L, and Zhu S N 2021 Photon. Res. 9 1062 |
[33] | Qiao Z, Gong C, Liao Y, Wang C, Chan K K, Zhu S, Kim M, and Chen Y C 2022 Nano Lett. 22 1425 |
[34] | Chen W T, Zhu A Y, and Capasso F 2020 Nat. Rev. Mater. 5 604 |
[35] | Aieta F, Kats M A, Genevet P, and Capasso F 2015 Science 347 1342 |
[36] | Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, and Capasso F 2018 Nat. Nanotechnol. 13 220 |
[37] | Svoboda K and Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247 |
[38] | Wang S M, Wu P C, Su V C, Lai Y C, Hung C C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, and Tsai D P 2017 Nat. Commun. 8 187 |
[39] | Wang S M, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, and Tsai D P 2018 Nat. Nanotechnol. 13 227 |
[40] | Zhan T, Xiong J H, Lee Y H, and Wu S T 2018 Opt. Express 26 35026 |
[41] | Arbabi A, Horie Y, Bagheri M, and Faraon A 2015 Nat. Nanotechnol. 10 937 |
[42] | Kruk S, Hopkins B, Kravchenko I I, Miroshnichenko A, Neshev D N, and Kivshar Y S 2016 APL Photon. 1 030801 |
[43] | Novotny L, Bian R X, and Xie X S 1997 Phys. Rev. Lett. 79 645 |
[44] | Yang A H J, Lerdsuchatawanich T, and Erickson D 2009 Nano Lett. 9 1182 |
[45] | Juan M L, Righini M, and Quidant R 2011 Nat. Photon. 5 349 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|