Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 104101    DOI: 10.1088/0256-307X/40/10/104101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multifunctional Composite Material with Efficient Microwave Absorption and Ultra-High Thermal Conductivity
Yun Wang1,2, Tian-Cheng Han1,2*, Di-Fei Liang1,2, and Long-Jiang Deng1,2
1National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China
2Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Cite this article:   
Yun Wang, Tian-Cheng Han, Di-Fei Liang et al  2023 Chin. Phys. Lett. 40 104101
Download: PDF(4102KB)   PDF(mobile)(4133KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The increasing demands for electronic devices to achieve high miniaturization, functional integration, and wide bandwidth will exacerbate the heat generation and electromagnetic interference, which hinders the further development of electronic devices. Therefore, both the issues of microwave absorption and heat dissipation of materials need to be addressed simultaneously. Herein, a multifunctional composite material is proposed by periodic arrangement of copper pillars in a matrix, based on the wave-absorbing material. As a result, the equivalent thermal conductivity of the composite structure is nearly 35 times higher than the wave-absorbing matrix, with the area filling proportion of the thermal conductivity material being 3.14%. Meanwhile, the reflectivity of the composite structure merely changes from $-15.05$ dB to $-13.70$ dB. It is proved that the designed composite structure possesses both high thermal conduction and strong microwave absorption. The measured results accord well with the simulation results, which demonstrates that the thermal conductivity of the composite structure can reach more than 10 W$\cdot$m$^{-1}\cdot$K$^{-1}$ without significant deterioration of the absorption performance.
Received: 25 July 2023      Published: 22 September 2023
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  72.80.Tm (Composite materials)  
  74.25.F- (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/104101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/104101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun Wang
Tian-Cheng Han
Di-Fei Liang
and Long-Jiang Deng
[1] Li L L, Zhao H T, Liu C, Li L, and Cui T J 2022 eLight 2 7
[2] Li J C, Zhao X Y, Wu W J, Ji X W, Lu Y L, and Zhang L Q 2021 Chem. Eng. J. 415 129054
[3] Qin F X and Brosseau C 2012 J. Appl. Phys. 111 61301
[4] Zheng K, Jia K, Liu W, Li K X, and Wang D H 2020 New Chem. Mater. 48 77 (in Chinese)
[5] Wang X W, Shi Z F, Li Y R, Wang X, and Gong R Z 2021 J. Magn. Mater. Devices 52 24 (in Chinese)
[6] Wang X W, Qin W, Wang X, Feng Z K, and Gong R Z 2022 J. Magn. Mater. Devices 53 11 (in Chinese)
[7] Pan Y, Yang B, Jia N, Yu Y N, Xu X, Wang Y Y, Xia R, Qian J S, Wang C J, Sun A Q, Shi Y, and Fang Y R 2021 Ind. Eng. Chem. Res. 60 12316
[8] Fu K, Liu X Y, Yang Y J, Wang Z J, Zhou W Y, Tong G X, Wang X J, and Wu W H 2023 Chem. Eng. J. 457 141318
[9] Yang X F, Fu K, Wu L S, Tang X, Wang J L, Tong G X, Chen D B, and Wu W H 2022 Carbon 199 1
[10] Fan B X, Xing L, Yang K X, Zhou F J, He Q M, Tong G X, and Wu W H 2023 Chem. Eng. J. 451 138492
[11] Zhang Z, Wang J D, Shang J, Xu Y D, Wan Y J, Lin Z Q, Sun R, and Hu Y G 2023 Small 19 2205716
[12]Jiang Y 2019 Constructing Network Structure to Fabricate Polymer Composites for Thermal Conduction and Microwave Absorption (Ph.D. Dissertation) (Hefei: University of Science and Technology of China) (in Chinese)
[13] Zhang Y Q, Yi Y S, Gao X Y, Li X X, Jin H, and Zhang L Z 2020 Rare Met. Mater. Eng. 49 655 (in Chinese)
[14]Lu W H, Li X Y, Cheng W H, and Qiu T 2010 Ceramic Transactions (Hoboken: Wiley) vol 210 chap 9 p 479
[15] Zhang X Y, Tan S H, Zhang J X, Jiang D L, Hu B, and Gao C 2004 J. Mater. Res. 19 2759
[16] Fang X, Pan L M, Yin S, Chen H X, Qiu T, and Yang J 2020 Ceram. Int. 46 21505
[17] Fang X, Jiang L, Pan L M, Yin S, Qiu T, and Yang J 2021 J. Adv. Ceram. 10 301
[18] Wang L F, An L Q, Zhou G H, Wang X G, Sun K, Chen H T, and Hong H T 2022 J. Master. Sci. Mater. Electron. 33 10723
[19] Li P W, Wang C B, Liu X H, Shen Q, and Zhang L M 2019 Adv. Appl. Ceram. 118 313
[20] He Y Q, Li X Y, Zhang J X, Li X G, Duan Y S, Huang M M, Bai H N, Jiang D L, and Qiu T 2018 J. Eur. Ceram. Soc. 38 501
[21] Gu J L, Sang L L, Pan B, Feng Y B, Yang J, and Li X Y 2018 Materials 11 969
[22] Ding M H, Liu Y Q, Lu X R, and Tang W Z 2019 Materials 12 3700
[23] Chen G R and Tuan W H 2022 Int. J. Appl. Ceram. Technol. 19 1001
[24] Lee D, So S, Hu G W, Kim M, Badloe T, Cho H, Kim J, Kim H, Qiu C W, and Rho J 2022 eLight 2 1
[25] Belov P A, Marqués R, Maslovski S I, Nefedov I S, Silveirinha C R, and Tretyakov S A 2003 Phys. Rev. B 67 113103
[26] Belov P A, Tretyakov S A, and Viitanen A J 2002 J. Electromagn. Waves Appl. 16 1153
[27]Yang H 2015 Study on the Effective Model of the Wire Medium by Using the Finite-Difference Time-Domain Method (Ph.D. Dissertation) (Beijing: Beijing Institute of Technology) (in Chinese)
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 104101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 104101
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 104101
[4] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 104101
[5] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 104101
[6] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 104101
[7] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 104101
[8] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 104101
[9] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 104101
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 104101
[11] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 104101
[12] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 104101
[13] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 104101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 104101
[15] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 104101
Viewed
Full text


Abstract