Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 103202    DOI: 10.1088/0256-307X/40/10/103202
ATOMIC AND MOLECULAR PHYSICS |
Enhanced THz Radiation from Spatially Inhomogeneous Fields
Guang-Rui Jia1,2, Deng-Xin Zhao1,3, Song-Song Zhang2, Zi-Wei Yue2, Chao-Chao Qin1, Zhao-Yong Jiao1, and Xue-Bin Bian1,3*
1School of Physics, Henan Normal University, Xinxiang 453007, China
2School of Materials Science and Engneering, Henan Normal University, Xinxiang 453007, China
3Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
Cite this article:   
Guang-Rui Jia, Deng-Xin Zhao, Song-Song Zhang et al  2023 Chin. Phys. Lett. 40 103202
Download: PDF(4061KB)   PDF(mobile)(4066KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear terahertz (THz) radiation from gas media usually relies on the asymmetric laser-induced current produced by ultra-intense two-color laser fields with a specific phase delay. Here a new scheme is proposed and theoretically investigated, in which the radiation is generated by spatially inhomogeneous fields induced by relatively low-intensity monochromatic lasers and an array of single triangular metallic nanostructures. Our simulations are based on the classical photocurrent model and the time-dependent Schrödinger equations separately. It is found that the collective motion of the ionized electrons can be efficiently controlled by the inhomogeneous field, resulting in strong residual currents. The intensity of the THz radiation could be enhanced by about two orders of magnitude by increasing the spatial inhomogeneity of the field.
Received: 22 July 2023      Published: 26 September 2023
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/103202       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/103202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guang-Rui Jia
Deng-Xin Zhao
Song-Song Zhang
Zi-Wei Yue
Chao-Chao Qin
Zhao-Yong Jiao
and Xue-Bin Bian
[1] E Y W, Zhang L L, Tcypkin A, Kozlov S, Zhang C L, and Zhang X C 2021 Ultrafast Sci. 2021 9892763
[2] Zhang Z L, Zhang J Y, Chen Y P et al. 2022 Ultrafast Sci. 2022 9870325
[3] Song B Q and Yang X et al. 2023 Ultrafast Sci. 3 0007
[4] Du H C, Wang H Q, and Hu B T 2011 Chin. Phys. B 20 044207
[5] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003
[6] Zhao T and Wu Z H 2020 Chin. Phys. B 29 034101
[7] Yeh K L, Hoffmann M C, Hebling J, and Nelson K A 2007 Appl. Phys. Lett. 90 171121
[8] Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2007 Opt. Express 15 4577
[9] Xie X, Dai J, and Zhang X C 2006 Phys. Rev. Lett. 96 075005
[10] Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2012 IEEE J. Quantum Electron. 48 797
[11] Zhang L, Wang G L, and Zhou X X 2016 J. Mod. Opt. 63 2159
[12] Du L L, Zhao S F, Zhou X X, and Zhao Z X 2015 Chin. Phys. B 24 043203
[13] Xu X, Huang Y D, Zhang Z L et al. 2023 Chin. Phys. Lett. 40 045201
[14] Kim K Y 2009 Phys. Plasmas 16 056706
[15] Ciappina M F 2017 Rep. Prog. Phys. 80 054401
[16] Kim S, Jeong T I, Park J, Ciappina M F, and Kim S 2022 Nanophotonics 11 2393
[17] Kim S, Jin J, Kim Y J, Park I Y, Kim Y, and SW K 2008 Nature 453 757
[18] Xue S, Du H C, Xia Y, and Hu B T 2015 Chin. Phys. B 24 054210
[19] Zhang J 2016 Laser Phys. Lett. 13 075302
[20] Ciappina M F, Acimovic S S, Sharan T, Biegert J, Quidant R, and Lewenstein M 2012 Opt. Express 20 26261
[21] Feng L Q 2015 Phys. Rev. A 92 053832
[22] Ciappina M F, Biegert J, Quidant R, and Lewenstein M 2012 Phys. Rev. A 85 033828
[23] Wang Z, He L, Luo J, Lan P, and Lu P 2014 Opt. Express 22 25909
[24] Zhao J and Zhao Z X 2010 Chin. Phys. Lett. 27 063301
[25] Herink G, DR S, Gulde M, and Ropers C 2012 Nature 483 190
[26] Krüger M, Schenk M, and Hommelhoff P 2011 Nature 475 78
[27] Ropers C, Solli D R, Schulz C P, Lienau C, and Elsaesser T 2007 Phys. Rev. Lett. 98 043907
[28] Piglosiewicz B, Schmidt S, Park D J et al. 2014 Nat. Photon. 8 37
[29] Zhang H D, Liu X W, Jin F C et al. 2021 Chin. Phys. Lett. 38 063201
[30] Zhong H Y, Guo J, Feng W, Li P C, and Liu X S 2016 Phys. Lett. A 380 188
[31] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[32] Oubre C and Nordlander P 2005 J. Phys. Chem. B 109 10042
[33] de Alaiza Martínez P G, Babushkin I, Bergé L et al. 2015 Phys. Rev. Lett. 114 183901
[34] Babushkin I, Skupin S, Husakou A et al. 2011 New J. Phys. 13 123029
[35] Wu H C, Meyer-ter-Vehn J, and Sheng Z M 2008 New J. Phys. 10 043001
[36] Zeng S L, Zou S Y, and Yan J 2009 Chin. Phys. Lett. 26 053202
[37] Chu S I and Tong X M 1998 Chem. Phys. Lett. 294 31
[38] Tong X M and Chu S I 1997 Chem. Phys. 217 119
[39] Wang W M, Sheng Z M, Wu H C et al. 2008 Opt. Express 16 16999
[40] Zhang L L, Wang W M, Wu T et al. 2017 Phys. Rev. Lett. 199 235001
Related articles from Frontiers Journals
[1] Quan-Wei Nan, Chao Wang, Xin-Yue Yu, Xi Zhao, Yongjun Cheng, Maomao Gong, Xiao-Jing Liu, Victor Kimberg, and Song-Bin Zhang. Resonant Auger Scattering by Attosecond X-Ray Pulses[J]. Chin. Phys. Lett., 2023, 40(9): 103202
[2] Zhaoyang Peng, Yue Lang, Yalei Zhu, Jing Zhao, Dongwen Zhang, Zengxiu Zhao, and Jianmin Yuan. Crystal-Momentum-Resolved Contributions to Harmonics in Laser-Driven Graphene[J]. Chin. Phys. Lett., 2023, 40(5): 103202
[3] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 103202
[4] Yankun Dou, Yiqi Fang, Peipei Ge, and Yunquan Liu. Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields[J]. Chin. Phys. Lett., 2023, 40(3): 103202
[5] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 103202
[6] Nana Dong, Yan Zhou, Shanbiao Pang, Xiaodong Huang, Ke Liu, Lunhua Deng, and Huailiang Xu. Strong-Field-Induced N$_{2}^{+}$ Air Lasing in Nitrogen Glow Discharge Plasma[J]. Chin. Phys. Lett., 2021, 38(4): 103202
[7] Xiang-Ye Wei, Zhi-Wei Tu, Chang Liu, He-Long Li, Huai-Liang Xu. Differentiation of Positional Isomers of Propyl Alcohols Using Filament-Induced Fluorescence[J]. Chin. Phys. Lett., 2016, 33(05): 103202
[8] JI Zhong-Hua, ZHANG Hong-Shan, WU Ji-Zhou, YUAN Jin-Peng, ZHAO Yan-Ting**, MA Jie, WANG Li-Rong, XIAO Lian-Tuan, JIA Suo-Tang . Photoassociative Production and Detection of Ultracold Polar RbCs Molecules[J]. Chin. Phys. Lett., 2011, 28(8): 103202
[9] ZHU Jing-Yi, LIU Ben-Kang, WANG Yan-Qiu, HE Hai-Xiang, WANG Li. Dynamics of H2 in Intense Femtosecond Laser Field[J]. Chin. Phys. Lett., 2010, 27(9): 103202
[10] ZHAO Jing, ZHAO Zeng-Xiu. Effects of Bounding Potential on High-Order Harmonic Generation with H2+[J]. Chin. Phys. Lett., 2010, 27(6): 103202
[11] Li Wang, Fan Xiao, Pan Song, Wenkai Tao, Xu Sun, Jiacan Wang, Zhigang Zheng, Jing Zhao, Xiaowei Wang, and Zengxiu Zhao. Intensity-Dependent Dipole Phase in High-Order Harmonic Interferometry[J]. Chin. Phys. Lett., 2023, 40(11): 103202
Viewed
Full text


Abstract