ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Enhanced THz Radiation from Spatially Inhomogeneous Fields |
Guang-Rui Jia1,2, Deng-Xin Zhao1,3, Song-Song Zhang2, Zi-Wei Yue2, Chao-Chao Qin1, Zhao-Yong Jiao1, and Xue-Bin Bian1,3* |
1School of Physics, Henan Normal University, Xinxiang 453007, China 2School of Materials Science and Engneering, Henan Normal University, Xinxiang 453007, China 3Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
|
|
Cite this article: |
Guang-Rui Jia, Deng-Xin Zhao, Song-Song Zhang et al 2023 Chin. Phys. Lett. 40 103202 |
|
|
Abstract Nonlinear terahertz (THz) radiation from gas media usually relies on the asymmetric laser-induced current produced by ultra-intense two-color laser fields with a specific phase delay. Here a new scheme is proposed and theoretically investigated, in which the radiation is generated by spatially inhomogeneous fields induced by relatively low-intensity monochromatic lasers and an array of single triangular metallic nanostructures. Our simulations are based on the classical photocurrent model and the time-dependent Schrödinger equations separately. It is found that the collective motion of the ionized electrons can be efficiently controlled by the inhomogeneous field, resulting in strong residual currents. The intensity of the THz radiation could be enhanced by about two orders of magnitude by increasing the spatial inhomogeneity of the field.
|
|
Received: 22 July 2023
Published: 26 September 2023
|
|
PACS: |
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
31.70.Hq
|
(Time-dependent phenomena: excitation and relaxation processes, and reaction rates)
|
|
|
|
|
[1] | E Y W, Zhang L L, Tcypkin A, Kozlov S, Zhang C L, and Zhang X C 2021 Ultrafast Sci. 2021 9892763 |
[2] | Zhang Z L, Zhang J Y, Chen Y P et al. 2022 Ultrafast Sci. 2022 9870325 |
[3] | Song B Q and Yang X et al. 2023 Ultrafast Sci. 3 0007 |
[4] | Du H C, Wang H Q, and Hu B T 2011 Chin. Phys. B 20 044207 |
[5] | Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003 |
[6] | Zhao T and Wu Z H 2020 Chin. Phys. B 29 034101 |
[7] | Yeh K L, Hoffmann M C, Hebling J, and Nelson K A 2007 Appl. Phys. Lett. 90 171121 |
[8] | Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2007 Opt. Express 15 4577 |
[9] | Xie X, Dai J, and Zhang X C 2006 Phys. Rev. Lett. 96 075005 |
[10] | Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2012 IEEE J. Quantum Electron. 48 797 |
[11] | Zhang L, Wang G L, and Zhou X X 2016 J. Mod. Opt. 63 2159 |
[12] | Du L L, Zhao S F, Zhou X X, and Zhao Z X 2015 Chin. Phys. B 24 043203 |
[13] | Xu X, Huang Y D, Zhang Z L et al. 2023 Chin. Phys. Lett. 40 045201 |
[14] | Kim K Y 2009 Phys. Plasmas 16 056706 |
[15] | Ciappina M F 2017 Rep. Prog. Phys. 80 054401 |
[16] | Kim S, Jeong T I, Park J, Ciappina M F, and Kim S 2022 Nanophotonics 11 2393 |
[17] | Kim S, Jin J, Kim Y J, Park I Y, Kim Y, and SW K 2008 Nature 453 757 |
[18] | Xue S, Du H C, Xia Y, and Hu B T 2015 Chin. Phys. B 24 054210 |
[19] | Zhang J 2016 Laser Phys. Lett. 13 075302 |
[20] | Ciappina M F, Acimovic S S, Sharan T, Biegert J, Quidant R, and Lewenstein M 2012 Opt. Express 20 26261 |
[21] | Feng L Q 2015 Phys. Rev. A 92 053832 |
[22] | Ciappina M F, Biegert J, Quidant R, and Lewenstein M 2012 Phys. Rev. A 85 033828 |
[23] | Wang Z, He L, Luo J, Lan P, and Lu P 2014 Opt. Express 22 25909 |
[24] | Zhao J and Zhao Z X 2010 Chin. Phys. Lett. 27 063301 |
[25] | Herink G, DR S, Gulde M, and Ropers C 2012 Nature 483 190 |
[26] | Krüger M, Schenk M, and Hommelhoff P 2011 Nature 475 78 |
[27] | Ropers C, Solli D R, Schulz C P, Lienau C, and Elsaesser T 2007 Phys. Rev. Lett. 98 043907 |
[28] | Piglosiewicz B, Schmidt S, Park D J et al. 2014 Nat. Photon. 8 37 |
[29] | Zhang H D, Liu X W, Jin F C et al. 2021 Chin. Phys. Lett. 38 063201 |
[30] | Zhong H Y, Guo J, Feng W, Li P C, and Liu X S 2016 Phys. Lett. A 380 188 |
[31] | Corkum P B 1993 Phys. Rev. Lett. 71 1994 |
[32] | Oubre C and Nordlander P 2005 J. Phys. Chem. B 109 10042 |
[33] | de Alaiza Martínez P G, Babushkin I, Bergé L et al. 2015 Phys. Rev. Lett. 114 183901 |
[34] | Babushkin I, Skupin S, Husakou A et al. 2011 New J. Phys. 13 123029 |
[35] | Wu H C, Meyer-ter-Vehn J, and Sheng Z M 2008 New J. Phys. 10 043001 |
[36] | Zeng S L, Zou S Y, and Yan J 2009 Chin. Phys. Lett. 26 053202 |
[37] | Chu S I and Tong X M 1998 Chem. Phys. Lett. 294 31 |
[38] | Tong X M and Chu S I 1997 Chem. Phys. 217 119 |
[39] | Wang W M, Sheng Z M, Wu H C et al. 2008 Opt. Express 16 16999 |
[40] | Zhang L L, Wang W M, Wu T et al. 2017 Phys. Rev. Lett. 199 235001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|