ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Wavelength Dependence of Atomic Excitation for Ar Subject to Intense Midinfrared Laser Pulses |
Yang-Ni Liu1,2, Song-Po Xu2,4*, Mu-Feng Zhu2,3, Zheng-Rong Xiao2,3, Shao-Gang Yu2,4, Lin-Qiang Hua2,3, Xuan-Yang Lai2,3,4, Wei Quan2,3*, Wen-Xing Yang1*, and Xiao-Jun Liu2,3* |
1School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434022, China 2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4Wuhan Institute of Quantum Technology, Wuhan 430206, China
|
|
Cite this article: |
Yang-Ni Liu, Song-Po Xu, Mu-Feng Zhu et al 2023 Chin. Phys. Lett. 40 103201 |
|
|
Abstract We report experimental and theoretical investigations of wavelength dependence of Rydberg state excitation (RSE) process of Ar subject to intense laser fields. By simultaneously measuring ionization and RSE yields of Ar atoms subject to strong laser fields at a series of wavelengths, we obtain the wavelength scaling law of the ratio of Ar$^{*}$ over Ar$^{+}$ with respect to the laser intensity, and this result can be well reproduced by a nonadiabatic model, but not by the classical-trajectory Monte Carlo model. Our results indicate that the nonadiabatic corrections of the photoelectron tunneling exit and tunneling probability play a significant role at shorter wavelengths. Analysis shows that the wavelength dependence phenomenon is due to the interplay of the nonadiabatic effect, wave-packet diffusion and Coulomb focusing effect of the liberated electron.
|
|
Received: 17 July 2023
Published: 26 September 2023
|
|
PACS: |
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
|
|
|
[1] | Agostini P, Fabre F, Mainfray G et al. 1979 Phys. Rev. Lett. 42 1127 |
[2] | de Boer M P and Muller H G 1992 Phys. Rev. Lett. 68 2747 |
[3] | DiMauro L F and Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79 |
[4] | Becker W, Grasbon F, Kopold R et al. 2002 Adv. At. Mol. Opt. Phys. 48 35 |
[5] | Agostini P and DiMauro L F 2008 Contemp. Phys. 49 179 |
[6] | Keldysh L V 1965 Sov. Phys. Usp. 8 496 |
[7] | Nubbemeyer T et al. 2008 Phys. Rev. Lett. 101 233001 |
[8] | Eichmann U, Nubbemeyer T, Rottke H et al. 2009 Nature 461 1261 |
[9] | Eichmann U, Saenz A, Eilzer S et al. 2013 Phys. Rev. Lett. 110 203002 |
[10] | Zimmermann H, Buller J, Eilzer S et al. 2015 Phys. Rev. Lett. 114 123003 |
[11] | Liu M Q, Xu S P, Hu S L et al. 2021 Optica 8 765 |
[12] | Xu S P, Liu M Q, Quan W et al. 2022 Phys. Rev. A 106 063106 |
[13] | Zimmermann H, Patchkovskii S, Ivanov M et al. 2017 Phys. Rev. Lett. 118 013003 |
[14] | Zhang W B et al. 2019 Nat. Commun. 10 757 |
[15] | Xu S P, Liu M Q, Hu S L et al. 2020 Phys. Rev. A 102 043104 |
[16] | Chetty D, Glover R D, deHarak B A et al. 2020 Phys. Rev. A 101 053402 |
[17] | Hu S L, Hao X L, Lv H et al. 2019 Opt. Express 27 31629 |
[18] | von Veltheim A, Manschwetus B, Quan W et al. 2013 Phys. Rev. Lett. 110 023001 |
[19] | Wolter B, Lemell C, Baudisch M et al. 2014 Phys. Rev. A 90 063424 |
[20] | Beaulieu S, Camp S, Descamps D et al. 2016 Phys. Rev. Lett. 117 203001 |
[21] | Yun H, Mun J H, Hwang S I et al. 2018 Nat. Photon. 12 620 |
[22] | Wiley W C and McLaren I H 1955 Rev. Sci. Instrum. 26 1150 |
[23] | Guilhaus M, Selby D, and Mlynski V 2000 Mass Spectrom. Rev. 19 65 |
[24] | Cheng J X, Ouyang X P, Zheng Y et al. 2008 Chin. Phys. B 17 02881 |
[25] | Zhang P, Feng Z P, Luo S Q et al. 2016 Chin. Phys. B 25 033202 |
[26] | Grasbon F, Paulus G G, Walther H et al. 2003 Phys. Rev. Lett. 91 173003 |
[27] | Song X H, Lin C, Sheng Z H et al. 2016 Sci. Rep. 6 28392 |
[28] | Yang W F, Zhang H T, Lin C et al. 2016 Phys. Rev. A 94 043419 |
[29] | Li M, Geng J W, Han M et al. 2016 Phys. Rev. A 93 013402 |
[30] | Li M, Liu M M, Geng J W et al. 2017 Phys. Rev. A 95 053425 |
[31] | Liu M M, Li M, Shao Y et al. 2017 Phys. Rev. A 96 043410 |
[32] | Luo S Q, Li M, Xie W H et al. 2019 Phys. Rev. A 99 053422 |
[33] | Yudin G L and Ivanov M Y 2001 Phys. Rev. A 64 013409 |
[34] | Perelomov A M, Popov V S, and Terent'ev M V 1966 Sov. Phys.-JETP 23 924 |
[35] | Liu H et al. 2012 Phys. Rev. Lett. 109 093001 |
[36] | Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V et al. 2009 Laser Phys. 19 1550 |
[37] | Eilzer S and Eichmann U 2014 J. Phys. B 47 204014 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|