GENERAL |
|
|
|
|
A Quorum Sensing Active Matter in a Confined Geometry |
Yuxin Zhou1, Yunyun Li1*, and Fabio Marchesoni1,2* |
1MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 2Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
|
|
Cite this article: |
Yuxin Zhou, Yunyun Li, and Fabio Marchesoni 2023 Chin. Phys. Lett. 40 100505 |
|
|
Abstract Inspired by the problem of biofilm growth, we numerically investigate clustering in a two-dimensional suspension of active (Janus) particles of finite size confined in a circular cavity. Their dynamics is regulated by a non-reciprocal mechanism that causes them to switch from active to passive above a certain threshold of the perceived near-neighbor density (quorum sensing). A variety of cluster phases, i.e., glassy, solid (hexatic) and liquid, are observed, depending on the particle dynamics at the boundary, the quorum sensing range, and the level of noise.
|
|
Received: 19 July 2023
Published: 10 October 2023
|
|
PACS: |
36.40.Sx
|
(Diffusion and dynamics of clusters)
|
|
64.75.Xc
|
(Phase separation and segregation in colloidal systems)
|
|
82.30.Nr
|
(Association, addition, insertion, cluster formation)
|
|
05.40.Jc
|
(Brownian motion)
|
|
05.20.Jj
|
(Statistical mechanics of classical fluids)
|
|
|
|
|
[1] | Schwarzendahl F J and Mazza M G 2022 Europhys. Lett. 140 47001 |
[2] | Grobas I, Polin M, and Asally M 2021 eLife 10 e62632 |
[3] | Fily Y and Marchetti M C 2012 Phys. Rev. Lett. 108 235702 |
[4] | Ginot F, Theurkauff I, Detcheverry F, Ybert C, and Cottin-Bizonne C 2018 Nat. Commun. 9 696 |
[5] | Lavergne F A, Wendehenne H, Bäuerle T, and Bechinger C 2019 Science 364 70 |
[6] | Bäuerle T, Fischer A, Speck T, and Bechinger1 C 2018 Nat. Commun. 9 3232 |
[7] | Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219 |
[8] | Miller M B and Bassler B L 2001 Annu. Rev. Microbiol. 55 165 |
[9] | Parsek N R and Greenberg E P 2005 Trends Microbiol. 13 27 |
[10] | Tjhung E, Nardini C, and Cates M E 2018 Phys. Rev. X 8 031080 |
[11] | Shi X, Fausti G, Chaté H, Nardini C, and Solon A 2020 Phys. Rev. Lett. 125 168001 |
[12] | Yadzi S and Ardekani A M 2012 Biomicrofluidics 6 044114 |
[13] | Li Y Y, Zhou Y X, Marchesoni F, and Ghosh P K 2022 Soft Matter 18 4778 |
[14] | Ghosh P K, Zhou Y, Li Y, Marchesoni F, and Nori F 2023 ChemPhysChem 24 e202200471 |
[15] | Walther A and Müller A H E 2013 Chem. Rev. 113 5194 |
[16] | Ghosh P K, Misko V R, Marchesoni F, and Nori F 2013 Phys. Rev. Lett. 110 268301 |
[17] | Kloeden P E and Platen E 1992 Numerical Solution of Stochastic Differential Equations (Berlin: Springer) |
[18] | Kärger J and Ruthven D M 1992 Diffusion in Zeolites and Other Microporous Solids (New York: Wiley) |
[19] | Codina J, Mahault B, Chaté H, Dobnikar J, Pagonabarraga I, and Shi X 2022 Phys. Rev. Lett. 128 218001 |
[20] | Chen Q, Patelli A, Chaté H, Ma Y, and Shi X 2017 Phys. Rev. E 96 020601(R) |
[21] | Barberis L and Peruani F 2016 Phys. Rev. Lett. 117 248001 |
[22] | see the Supplemental Material. |
[23] | Kümmel F, Shabestari P, Lozano C, Volpe G, and Bechinger C 2015 Soft Matter 11 6187 |
[24] | Redner G S, Hagan M F, and Baskaran A 2013 Phys. Rev. Lett. 110 055701 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|