GENERAL |
|
|
|
|
Quantum Squeezing of Matter-Wave Solitons in Bose–Einstein Condensates |
Jinzhong Zhu1 and Guoxiang Huang1,2,3* |
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China 2NYU-ECNU Joint Institute of Physics, New York University Shanghai, Shanghai 200062, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Jinzhong Zhu and Guoxiang Huang 2023 Chin. Phys. Lett. 40 100504 |
|
|
Abstract We investigate the quantum squeezing of matter-wave solitons in atomic Bose–Einstein condensates. By calculating quantum fluctuations of the solitons via solving the Bogoliubov–de Gennes equations, we show that significant quantum squeezing can be realized for both bright and dark solitons. We also show that the squeezing efficiency of the solitons can be enhanced and manipulated by atom–atom interaction and soliton blackness. The results reported here are beneficial not only for understanding quantum property of matter-wave solitons, but also for promising applications of Bose-condensed quantum gases.
|
|
Received: 10 July 2023
Published: 26 September 2023
|
|
|
|
|
|
[1] | Ablowitz M J and Clarkson P A 2003 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) |
[2] | Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, and Lewenstein M 1999 Phys. Rev. Lett. 83 5198 |
[3] | Fedichev P O, Muryshev A E, and Shlyapnikov G V 1999 Phys. Rev. A 60 3220 |
[4] | Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, and Phillips W D 2000 Science 287 97 |
[5] | Huang G X, Velarde M G, and Makarov V A 2001 Phys. Rev. A 64 013617 |
[6] | Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, and Salomon C 2002 Science 296 1290 |
[7] | Strecker K E, Partridge G B, Truscott A G, and Hulet R G 2002 Nature 417 150 |
[8] | Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock K, and Lewenstein M 2002 Phys. Rev. Lett. 89 110401 |
[9] | Huang G X, Szeftel J, and Zhu S H 2002 Phys. Rev. A 65 053605 |
[10] | Sinha S, Cherny A Y, Kovrizhin D, and Brand J 2006 Phys. Rev. Lett. 96 030406 |
[11] | Jackson B, Proukakis N P, Barenghi C F 2007 Phys. Rev. A 75 051601 |
[12] | Stellmer S, Becker C, Soltan-Panahi P, Richter E M, Dörscher S, Baumert M, Kronjäger J, Bongs K, and Sengstock K 2008 Phys. Rev. Lett. 101 120406 |
[13] | Cockburn S P, Nistazakis H E, Horikis T P, Kevrekidis P G, Proukakis N P, and Frantzeskakis D J 2010 Phys. Rev. Lett. 104 174101 |
[14] | Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A, and Cornish S L 2013 Nat. Commun. 4 1865 |
[15] | Xu Y, Zhang Y, and Wu B 2013 Phys. Rev. A 87 013614 |
[16] | Nguyen J H V, Dyke P, Luo D, Malomed B A, and Hulet R G 2014 Nat. Phys. 10 918 |
[17] | Zhang Y C, Zhou Z M, Malomed B A, and Pu H 2015 Phys. Rev. Lett. 115 253902 |
[18] | Jiang X D, Fan Z W, Chen Z P, Pang W, Li Y Y, and Malomed B A 2016 Phys. Rev. A 93 023633 |
[19] | Nguyen J H V, Luo D, and Hulet R G 2017 Science 356 422 |
[20] | Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301 |
[21] | Hang C, Gabadadze G, and Huang G 2019 Phys. Lett. B 793 390 |
[22] | Mateo A M and Yu X Q 2022 Phys. Rev. A 105 L021301 |
[23] | Shi Z Y and Huang G X 2023 Phys. Rev. E 107 024214 |
[24] | Pethick C J and Smith H 2008 Bose–Einstein Condensation in Dilute Gases 2nd edn (Cambridge: Cambridge University Press) |
[25] | Lewenstein M and You L 1996 Phys. Rev. Lett. 77 3489 |
[26] | Yi S, Müstecaplıoğlu Ö E, and You L 2003 Phys. Rev. Lett. 90 140404 |
[27] | Dziarmaga J 2004 Phys. Rev. A 70 063616 |
[28] | Villari L D M, Faccio D, Biancalana F, and Conti C 2018 Phys. Rev. A 98 043859 |
[29] | Significant effect may occur when soliton moves to the boundary of the cigar-shaped condensate even if is small. For simplicity, we do not consider such a situation here. |
[30] | Bogoliubov N 1947 J. Phys. (Moscow) 11 23 |
[31] | Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 |
[32] | Ashida Y, Gong Z P, and Ueda M 2020 Adv. Phys. 69 249 |
[33] | Huang G X, Deng L, Yan J R, and Hu B 2006 Phys. Lett. A 357 150 |
[34] | Huang G X and Compagnon N 2008 Phys. Lett. A 372 321 |
[35] | Zhu J Z, Zhang Q, and Huang G X 2021 Phys. Rev. A 103 063512 |
[36] | Zhu J Z and Huang G X 2022 Phys. Rev. A 105 033515 |
[37] | Zhu J Z, Mu Y, and Huang G X 2023 Phys. Rev. A 107 033517 |
[38] | Ma J, Wang X G, Sun C P, and Nori F 2011 Phys. Rep. 509 89 |
[39] | Schnabel R 2017 Phys. Rep. 684 1 |
[40] | Sinatra A 2022 Appl. Phys. Lett. 120 120501 |
[41] | Haus H A and Lai Y 1990 J. Opt. Soc. Am. B 7 386 |
[42] | Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|