GENERAL |
|
|
|
|
Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation |
Yanli Yao1, Houhui Yi2, Xin Zhang1, and Guoli Ma1* |
1Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China 2School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
|
|
Cite this article: |
Yanli Yao, Houhui Yi, Xin Zhang et al 2023 Chin. Phys. Lett. 40 100503 |
|
|
Abstract We take the higher-order nonlinear Schrödinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higher-order nonlinear effects and higher-order dispersion effects. The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons. The larger the higher-order nonlinear coefficient, the more intense the interaction between optical solitons, and the more unstable the transmission. At the same time, we discuss the influence of other free parameters on third-order soliton interactions. Effectively regulate the interaction of three optical solitons by controlling relevant parameters. These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.
|
|
Received: 10 August 2023
Published: 28 September 2023
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
|
|
|
[1] | Xing X W, Liu Y X, Han J F, Liu W J, and Wei Z Y 2023 ACS Photon. 10 2264 |
[2] | Cui W W, Xing X W, Chen Y Q, Xiao Y J, Han Y, and Liu W J 2023 Chin. Phys. Lett. 40 024201 |
[3] | Liu X Y, Zhang H X, Yan Y Y, and Liu W J 2023 Phys. Lett. A 457 128568 |
[4] | Wang H T, Zhou Q, and Liu W J 2022 J. Adv. Res. 38 179 |
[5] | Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Han Y, Han J F, and Wei Z Y 2022 Appl. Phys. Lett. 120 053108 |
[6] | Cui W W, Xing X W, Xiao Y J, and Liu W J 2022 Acta. Phys. Sin. 71 024206 (in Chinese) |
[7] | Ma G L, Zhou Q, Yu W T, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2509 |
[8] | Liu W J, Shi T, Liu M L, Wang Q, Liu X M, Zhou Q, Lei M, Lu P F, Yu L, and Wei Z Y 2021 Opt. Express 29 29402 |
[9] | Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, and Wei Z Y 2017 Opt. Express 25 2950 |
[10] | Liu W J, Pang L H, Han H N, Bi K, Lei M, and Wei Z Y 2017 Nanoscale 9 5806 |
[11] | Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, and Wei Z Y 2018 Photon. Res. 6 220 |
[12] | Dudley J M, Genty G, and Coen S 2006 Rev. Mod. Phys. 78 1135 |
[13] | Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, and Kippenberg T J 2014 Nat. Photon. 8 145 |
[14] | Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, and Dudley J M 2010 Nat. Phys. 6 790 |
[15] | Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201 |
[16] | Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202 |
[17] | Wang H T, Li X, Zhou Q, and Liu W J 2023 Chaos Solitons & Fractals 166 112924 |
[18] | Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501 |
[19] | Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202 |
[20] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 |
[21] | Yan Y Y, Liu W J, Wang H T et al. 2023 Nonlinear Dyn. 111 17463 |
[22] | Yu W T, Liu W J, and Zhang H X 2022 Chaos Solitons & Fractals 159 112132 |
[23] | Liu X Y, Zhang H X, and Liu W J 2022 Appl. Math. Modell. 102 305 |
[24] | Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M, and Biswas A 2019 Nonlinear Dyn. 96 729 |
[25] | Liu X Y, Triki H, Zhou Q, Liu W J, and Biswas A 2018 Nonlinear Dyn. 94 703 |
[26] | Stegeman G I and Segev M 1999 Science 286 1518 |
[27] | Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, and Edmundson D 2004 J. Opt. B 6 S288 |
[28] | Buryak A V, Di Trapani P, Skryabin D V, and Trillo S 2002 Phys. Rep. 370 63 |
[29] | Rotschild C, Alfassi B, Cohen O, and Segev M 2006 Nat. Phys. 2 769 |
[30] | Tang D Y, Zhao B, Zhao L M, and Tam H Y 2005 Phys. Rev. E 72 016616 |
[31] | Akram S, Ahmad J, Rehman S U, Sarwar S, and Ali A 2023 Opt. Quantum Electron. 55 450 |
[32] | Yi H H, Yao Y L, Zhang X, and Ma G L 2023 Chin. Phys. B 32 100509 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|