Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 100503    DOI: 10.1088/0256-307X/40/10/100503
GENERAL |
Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation
Yanli Yao1, Houhui Yi2, Xin Zhang1, and Guoli Ma1*
1Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
2School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
Cite this article:   
Yanli Yao, Houhui Yi, Xin Zhang et al  2023 Chin. Phys. Lett. 40 100503
Download: PDF(11237KB)   PDF(mobile)(11253KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We take the higher-order nonlinear Schrödinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higher-order nonlinear effects and higher-order dispersion effects. The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons. The larger the higher-order nonlinear coefficient, the more intense the interaction between optical solitons, and the more unstable the transmission. At the same time, we discuss the influence of other free parameters on third-order soliton interactions. Effectively regulate the interaction of three optical solitons by controlling relevant parameters. These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.
Received: 10 August 2023      Published: 28 September 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/100503       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/100503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanli Yao
Houhui Yi
Xin Zhang
and Guoli Ma
[1] Xing X W, Liu Y X, Han J F, Liu W J, and Wei Z Y 2023 ACS Photon. 10 2264
[2] Cui W W, Xing X W, Chen Y Q, Xiao Y J, Han Y, and Liu W J 2023 Chin. Phys. Lett. 40 024201
[3] Liu X Y, Zhang H X, Yan Y Y, and Liu W J 2023 Phys. Lett. A 457 128568
[4] Wang H T, Zhou Q, and Liu W J 2022 J. Adv. Res. 38 179
[5] Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Han Y, Han J F, and Wei Z Y 2022 Appl. Phys. Lett. 120 053108
[6] Cui W W, Xing X W, Xiao Y J, and Liu W J 2022 Acta. Phys. Sin. 71 024206 (in Chinese)
[7] Ma G L, Zhou Q, Yu W T, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2509
[8] Liu W J, Shi T, Liu M L, Wang Q, Liu X M, Zhou Q, Lei M, Lu P F, Yu L, and Wei Z Y 2021 Opt. Express 29 29402
[9] Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, and Wei Z Y 2017 Opt. Express 25 2950
[10] Liu W J, Pang L H, Han H N, Bi K, Lei M, and Wei Z Y 2017 Nanoscale 9 5806
[11] Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, and Wei Z Y 2018 Photon. Res. 6 220
[12] Dudley J M, Genty G, and Coen S 2006 Rev. Mod. Phys. 78 1135
[13] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, and Kippenberg T J 2014 Nat. Photon. 8 145
[14] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, and Dudley J M 2010 Nat. Phys. 6 790
[15] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[16] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[17] Wang H T, Li X, Zhou Q, and Liu W J 2023 Chaos Solitons & Fractals 166 112924
[18] Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501
[19] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[20] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[21] Yan Y Y, Liu W J, Wang H T et al. 2023 Nonlinear Dyn. 111 17463
[22] Yu W T, Liu W J, and Zhang H X 2022 Chaos Solitons & Fractals 159 112132
[23] Liu X Y, Zhang H X, and Liu W J 2022 Appl. Math. Modell. 102 305
[24] Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M, and Biswas A 2019 Nonlinear Dyn. 96 729
[25] Liu X Y, Triki H, Zhou Q, Liu W J, and Biswas A 2018 Nonlinear Dyn. 94 703
[26] Stegeman G I and Segev M 1999 Science 286 1518
[27] Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, and Edmundson D 2004 J. Opt. B 6 S288
[28] Buryak A V, Di Trapani P, Skryabin D V, and Trillo S 2002 Phys. Rep. 370 63
[29] Rotschild C, Alfassi B, Cohen O, and Segev M 2006 Nat. Phys. 2 769
[30] Tang D Y, Zhao B, Zhao L M, and Tam H Y 2005 Phys. Rev. E 72 016616
[31] Akram S, Ahmad J, Rehman S U, Sarwar S, and Ali A 2023 Opt. Quantum Electron. 55 450
[32] Yi H H, Yao Y L, Zhang X, and Ma G L 2023 Chin. Phys. B 32 100509
Related articles from Frontiers Journals
[1] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 100503
[2] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 100503
[3] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 100503
[4] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 100503
[5] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 100503
[6] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100503
[7] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 100503
[8] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100503
[9] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100503
[10] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 100503
[11] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 100503
[12] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 100503
[13] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 100503
[14] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100503
[15] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100503
Viewed
Full text


Abstract