Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 011401    DOI: 10.1088/0256-307X/40/1/011401
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Axion-Photon Conversion of LHAASO Multi-TeV and PeV Photons
Guangshuai Zhang1 and Bo-Qiang Ma1,2,3*
1School of Physics, Peking University, Beijing 100871, China
2Center for High Energy Physics, Peking University, Beijing 100871, China
3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Cite this article:   
Guangshuai Zhang and Bo-Qiang Ma 2023 Chin. Phys. Lett. 40 011401
Download: PDF(557KB)   PDF(mobile)(561KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Large High Altitude Air Shower Observatory (LHAASO) has reported the detection of a large number of multi-TeV-scale photon events also including several PeV-scale gamma-ray-photon events with energy as high as 1.4 PeV. The possibility that some of these events may have extragalactic origins is not yet excluded. Here we propose a mechanism for the traveling of very-high-energy and ultra-high-energy photons based upon the axion-photon conversion scenario, which allows extragalactic above-threshold photons to be detected by observers on the Earth. We show that the axion-photon conversation can serve as an alternative mechanism, besides the threshold anomaly due to Lorentz invariance violation, for the very-high-energy features of the newly observed gamma ray burst GRB 221009A.
Received: 24 October 2022      Published: 21 December 2022
PACS:  14.80.Va (Axions and other Nambu-Goldstone bosons (Majorons, familons, etc.))  
  11.30.Cp (Lorentz and Poincaré invariance)  
  12.60.-i (Models beyond the standard model)  
  98.70.Rz (γ-ray sources; γ-ray bursts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/011401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/011401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guangshuai Zhang and Bo-Qiang Ma
[1] Gould R and Schréder G 1966 Phys. Rev. Lett. 16 252
[2] Fazio G G and Stecker F W 1970 Nature 226 135
[3] Protheroe R J and Meyer H 2000 Phys. Lett. B 493 1
[4] Breit G and Wheeler J A 1934 Phys. Rev. 46 1087
[5]Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01
[6] Cao Z, Aharonian F A, An Q et al. (LHAASO Collaboration) 2021 Nature 594 33
[7] Cao Z, Aharonian F A, An Q et al. (LHAASO Collaboration) 2021 Science 373 425
[8] Li C Y Y and Ma B Q 2021 Phys. Rev. D 104 063012
[9]Li H and Ma B Q 2021 J. High Energy Astrophys. 32 1
[10] Li C and Ma B Q 2021 Sci. Bull. 66 2254
[11] He P and Ma B Q 2022 Universe 8 323
[12] Coriano C and Irges N 2007 Phys. Lett. B 651 298
[13] Chang S, Tazawa S, and Yamaguchi M 2000 Phys. Rev. D 61 084005
[14] Svrcek P and Witten E 2006 J. High Energy Phys. 2006(06) 051
[15] Arvanitaki A, Dimopoulos S, Dubovsky S, Kaloper N, and March-Russell J 2010 Phys. Rev. D 81 123530
[16] Peccei R D and Quinn H R 1977 Phys. Rev. Lett. 38 1440
[17] Sikivie P 1983 Phys. Rev. Lett. 51 1415
[18] Masso E and Toldra R 1995 Phys. Rev. D 52 1755
[19] De Angelis A, Roncadelli M, and Mansutti O 2007 Phys. Rev. D 76 121301
[20] De Angelis A, Mansutti O, Persic M, and Roncadelli M 2009 Mon. Not. Roy. Astron. Soc. 394 L21
[21] Sanchez-Conde M A, Paneque D, Bloom E, Prada F, and Dominguez A 2009 Phys. Rev. D 79 123511
[22]Mirizzi A and Montanino D 2009 J. Cosmol. Astropart. Phys. 2009(12) 004
[23]Dominguez A, Sanchez-Conde M A, and Prada F 2011 J. Cosmol. Astropart. Phys. 2011(11) 020
[24] Simet M, Hooper D, and Serpico P D 2008 Phys. Rev. D 77 063001
[25] Galanti G, Tavecchio F, Roncadelli M, and Evoli C 2019 Mon. Not. Roy. Astron. Soc. 487 123
[26] Long G B, Chen S, Xu S, and Zhang H H 2021 Phys. Rev. D 104 083014
[27]Liang Y F, Zhang X F, Cheng J G, Zeng H D, Fan Y Z, and Liang E W 2021 J. Cosmol. Astropart. Phys. 2021(11) 030
[28] Li H and Ma B Q 2022 arXiv:2210.05563 [astro-ph.HE]
[29] Li H and Ma B Q 2022 arXiv:2210.06338 [astro-ph.HE]
[30] Brevik I, Chaichian M, and Oksanen M 2021 Eur. Phys. J. C 81 926
[31] Zhu J and Ma B Q 2022 arXiv:2210.11376 [astro-ph.HE]
[32] Huang Y, Hu S, and Chen S et al. 2022 GCN Circular No. 32677
[33] Galanti G, Roncadelli M, and Tavecchio F 2022 arXiv:2210.05659 [astro-ph.HE]
[34] Baktash A, Horns D, and Meyer M 2022 arXiv:2210.07172 [astro-ph.HE]
[35]Troitsky S V 2022 JETP Lett. 116 745
[36] Nakagawa S, Takahashi F, Yamada M, and Yin W 2022 arXiv:2210.10022 [hep-ph]
[37] Krasnikov S V 1996 Phys. Rev. Lett. 76 2633
[38] Fairbairn M, Rashba T, and Troitsky S 2011 Phys. Rev. D 84 125019
[39] Raffelt G and Stodolsky L 1988 Phys. Rev. D 37 1237
[40] De Miguel J and Otani C 2022 Phys. Rev. D 106 L041302
[41]O'Hare C 2022 Axion Limits https://cajohare.github.io/ AxionLimits/docs/ap.html
[42]Dzhappuev D D, Afashokov Y Z, Dzaparova I M, Dzhatdoev T A, Gorbacheva E A et al. 2022 Astronomer's Telegram No. 15669
Related articles from Frontiers Journals
[1] Jinlong Zhang, Dinghui Wang, Minji Shi, Tongshuai Zhu, Haijun Zhang, Jing Wang. Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn$_2$Bi$_2$Te$_5$[J]. Chin. Phys. Lett., 2020, 37(7): 011401
[2] Zhong-Yuan An, Chong-Xing Yue, Zhi-Cheng Liu. Axion-Like Particles and the Higgs Decays $h \rightarrow PZ$ and $h \rightarrow P \ell^{+} \ell^{-}$[J]. Chin. Phys. Lett., 2018, 35(6): 011401
[3] LING Rui, PING Jia-Lun. Effective Field Theory Techniques Applied to the Properties of the Axion[J]. Chin. Phys. Lett., 2015, 32(5): 011401
Viewed
Full text


Abstract