Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 010501    DOI: 10.1088/0256-307X/40/1/010501
GENERAL |
Finite-Size Scaling Theory at a Self-Dual Quantum Critical Point
Long Zhang1* and Chengxiang Ding2
1Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
2School of Microelectronics & Data Science, Anhui University of Technology, Maanshan 243002, China
Cite this article:   
Long Zhang and Chengxiang Ding 2023 Chin. Phys. Lett. 40 010501
Download: PDF(1347KB)   PDF(mobile)(1357KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nondivergence of the generalized Grüneisen ratio (GR) at a quantum critical point (QCP) has been proposed to be a universal thermodynamic signature of self-duality. We study how the Kramers–Wannier-type self-duality manifests itself in the finite-size scaling behavior of thermodynamic quantities in the quantum critical regime. While the self-duality cannot be realized as a unitary transformation in the total Hilbert space for the Hamiltonian with the periodic boundary condition, it can be implemented in certain symmetry sectors with proper boundary conditions. Therefore, the GR and the transverse magnetization of the one-dimensional transverse-field Ising model exhibit different finite-size scaling behaviors in different sectors. This implies that the numerical diagnosis of self-dual QCP requires identification of the proper symmetry sectors.
Received: 06 October 2022      Editors' Suggestion Published: 01 January 2023
PACS:  5.70.Jk  
  64.70.Tg (Quantum phase transitions)  
  64.60.an (Finite-size systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/010501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Long Zhang and Chengxiang Ding
[1] Savit R 1980 Rev. Mod. Phys. 52 453
[2] Drühl K and Wagner H 1982 Ann. Phys. (N.Y.) 141 225
[3] Son D T 2015 Phys. Rev. X 5 031027
[4] Kramers H A and Wannier G H 1941 Phys. Rev. 60 252
[5] Kadanoff L P and Ceva H 1971 Phys. Rev. B 3 3918
[6] Fradkin E and Susskind L 1978 Phys. Rev. D 17 2637
[7] Zhang L 2019 Phys. Rev. Lett. 123 230601
[8] Zhu L J, Garst M, Rosch A, and Si Q M 2003 Phys. Rev. Lett. 91 066404
[9] Wu J, Zhu L, and Si Q 2018 Phys. Rev. B 97 245127
[10] Wang Z, Lorenz T, Gorbunov D I, Cong P T, Kohama Y, Niesen S, Breunig O, Engelmayer J, Herman A, Wu J, Kindo K, Wosnitza J, Zherlitsyn S, and Loidl A 2018 Phys. Rev. Lett. 120 207205
[11] Pfeuty P 1970 Ann. Phys. (N.Y.) 57 79
[12] Zhang G and Song Z 2015 Phys. Rev. Lett. 115 177204
[13]Barber M N 1983 Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J L (London: Academic Press) vol 8
[14]Binder K 1983 Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J L (London: Academic Press) vol 8
Related articles from Frontiers Journals
[1] Sheng Fang, Zongzheng Zhou, and Youjin Deng. Geometric Upper Critical Dimensions of the Ising Model[J]. Chin. Phys. Lett., 2022, 39(8): 010501
[2] Hongyu Lu, Chuhao Li, Bin-Bin Chen, Wei Li, Yang Qi, and Zi Yang Meng. Network-Initialized Monte Carlo Based on Generative Neural Networks[J]. Chin. Phys. Lett., 2022, 39(5): 010501
[3] Weilun Yuan , Shuai Yin , and Fan Zhong. Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling[J]. Chin. Phys. Lett., 2021, 38(2): 010501
[4] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 010501
[5] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 010501
[6] GE Hong-Xia, MENG Xiang-Pei, ZHU Ke-Qiang, CHENG Rong-Jun. The Stability Analysis for an Extended Car Following Model Based on Control Theory[J]. Chin. Phys. Lett., 2014, 31(08): 010501
[7] HUAI Lin-Ping, ZHANG Yu-Ran, LIU Si-Yuan, YANG Wen-Li, QU Shi-Xian, FAN Heng. Majorization Relation in Quantum Critical Systems[J]. Chin. Phys. Lett., 2014, 31(07): 010501
[8] DENG Yi-Bo, GU Qiang. Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice[J]. Chin. Phys. Lett., 2014, 31(2): 010501
[9] LIU You-Jun, ZHANG Hai-Lin, HE Li. Cooperative Car-Following Model of Traffic Flow and Numerical Simulation[J]. Chin. Phys. Lett., 2012, 29(10): 010501
[10] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 010501
[11] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 010501
[12] HU Bin, LI Fang, ZHOU Hou-Shun. Robustness of Complex Networks under Attack and Repair[J]. Chin. Phys. Lett., 2009, 26(12): 010501
[13] GU Shi-Jian, TIAN Guang-Shan, LIN Hai-Qing. Pairwise Entanglement and Quantum Phase Transitions in Spin Systems[J]. Chin. Phys. Lett., 2007, 24(10): 010501
[14] WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong. A Robustness Model of Complex Networks with Tunable Attack Information Parameter[J]. Chin. Phys. Lett., 2007, 24(7): 010501
[15] WANG Lin-Cheng, CUI Hai-Tao, YI Xue-Xi. Decoherence Induced by Spin Chain Environment[J]. Chin. Phys. Lett., 2006, 23(10): 010501
Viewed
Full text


Abstract