Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 010303    DOI: 10.1088/0256-307X/40/1/010303
GENERAL |
Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization
Bin-Lin Chen1 and Dan-Bo Zhang1,2*
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Cite this article:   
Bin-Lin Chen and Dan-Bo Zhang 2023 Chin. Phys. Lett. 40 010303
Download: PDF(2361KB)   PDF(mobile)(2370KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The zero-energy variance principle can be exploited in variational quantum eigensolvers for solving general eigenstates but its capacity for obtaining a specified eigenstate, such as ground state, is limited as all eigenstates are of zero energy variance. We propose a variance-based variational quantum eigensolver for solving the ground state by searching in an enlarged space of wavefunction and Hamiltonian. With a mutual variance-Hamiltonian optimization procedure, the Hamiltonian is iteratively updated to guild the state towards to the ground state of the target Hamiltonian by minimizing the energy variance in each iteration. We demonstrate the performance and properties of the algorithm with numeral simulations. Our work suggests an avenue for utilizing guided Hamiltonian in hybrid quantum-classical algorithms.
Received: 08 September 2022      Published: 03 January 2023
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/010303       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/010303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin-Lin Chen and Dan-Bo Zhang
[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[2] Abrams D S and Lloyd S 1997 Phys. Rev. Lett. 79 2586
[3] Buluta I and Nori F 2009 Science 326 108
[4] Trabesinger A 2012 Nat. Phys. 8 263
[5] Reiher M, Wiebe N, Svore K M, Wecker D, and Troyer M 2017 Proc. Natl. Acad. Sci. USA 114 7555
[6] Aspuru-Guzik A, Lindh R, and Reiher M 2018 ACS Cent. Sci. 4 144
[7] Cao Y, Romero J, and Aspuru-Guzik A 2018 IBM J. Res. Dev. 62 6:1
[8] Babbush R, Wiebe N, McClean J, McClain J, Neven H, and Chan G L 2018 Phys. Rev. X 8 011044
[9] Abrams D S and Lloyd S 1999 Phys. Rev. Lett. 83 5162
[10] Babbush R, McClean J, Wecker D, Aspuru-Guzik A, and Wiebe N 2015 Phys. Rev. A 91 022311
[11] Berry D W, Gidney C, Motta M, McClean J R, and Babbush R 2019 Quantum 3 208
[12] Yung M H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A, and Solano E 2015 Sci. Rep. 4 3589
[13] McClean J R, Romero J, Babbush R, and Aspuru-Guzik A 2016 New J. Phys. 18 023023
[14] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, and Gambetta J M 2017 Nature 549 242
[15] McArdle S, Jones T, Endo S, Li Y, Benjamin S C, and Yuan X 2019 npj Quantum Inf. 5 75
[16] Grimsley H R, Economou S E, Barnes E, and Mayhall N J 2019 Nat. Commun. 10 3007
[17] Wu J X and Hsieh T H 2019 Phys. Rev. Lett. 123 220502
[18] Takeshita T, Rubin N C, Jiang Z, Lee E, Babbush R, and McClean J R 2020 Phys. Rev. X 10 011004
[19] Nakanishi K M, Mitarai K, and Fujii K 2019 Phys. Rev. Res. 1 033062
[20] Higgott O, Wang D, and Brierley S 2019 Quantum 3 156
[21] Preskill J 2018 Quantum 2 79
[22] Siringo F and Marotta L 2005 Eur. Phys. J. C 44 293
[23]Zhang F, Gomes N, Yao Y, Orth P P, and Iadecola T 2021 Phys. Rev. B 104 075159
[24] Zhang D B, Yuan Z H, and Yin T 2020 arXiv:2006.15781 [quant-ph]
[25] Chertkov E and Clark B K 2018 Phys. Rev. X 8 031029
[26] Bairey E, Arad I, and Lindner N H 2019 Phys. Rev. Lett. 122 020504
[27] Qi X L and Ranard D 2019 Quantum 3 159
[28] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, and Zoller P 2019 Nature 569 355
[29] Farhi E, Goldstone J, Gutmann S, and Sipser M 2000 arXiv:0001106 [quant-ph]
[30] Garcia-Saez A and Latorre J 2018 arXiv:1806.02287 [quant-ph]
[31] Matsuura S, Yamazaki T, Senicourt V, Huntington L, and Zaribafiyan A 2020 New J. Phys. 22 053023
[32] Yuan Z H, Yin T, and Zhang D B 2021 Phys. Rev. A 103 012413
[33] Sweke R, Wilde F, Meyer J, Schuld M, Faehrmann P K, Meynard-Piganeau B, and Eisert J 2020 Quantum 4 314
[34] Li J, Yang X, Peng X, and Sun C P 2017 Phys. Rev. Lett. 118 150503
[35] Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504
[36] McClean J R, Boixo S, Smelyanskiy V N, Babbush R, and Neven H 2018 Nat. Commun. 9 4812
[37]Supplementary Material, which includes Refs. [38,39].
[38] Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger A T, and Coles P J 2021 Phys. Rev. X 11 041011
[39] Cerezo M, Sone A, Volkoff T, Cincio L, and Coles P J 2021 Nat. Commun. 12 1791
[40] Farhi E, Goldstone J, and Gutmann S 2014 arXiv: 1411.4028 [quant-ph]
[41] Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B, and Yuen H 2020 PRX Quantum 1 020319
[42] Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, García-Martín D, Garcia-Saez A, Latorre J I, and Carrazza S 2021 Quantum Sci. Technol. 7 015018
Related articles from Frontiers Journals
[1] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 010303
[2] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 010303
[3] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 010303
[4] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 010303
[5] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 010303
[6] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 010303
[7] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 010303
[8] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 010303
[9] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 010303
[10] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 010303
[11] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 010303
[12] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 010303
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 010303
[14] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 010303
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 010303
Viewed
Full text


Abstract