Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 012401    DOI: 10.1088/0256-307X/40/01/012401
NUCLEAR PHYSICS |
Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process
Jiawei Chen, Junchen Pei*, Yu Qiang, and Jihuai Chi
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Jiawei Chen, Junchen Pei, Yu Qiang et al  2023 Chin. Phys. Lett. 40 012401
Download: PDF(1701KB)   PDF(mobile)(1704KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We studied the fission properties of neutron-rich nuclei $^{278, 286}$Cf around the end point of $r$-process by microscopic self-consistent approaches. The fission barriers and potential energy surfaces are obtained by constrained static Skyrme Hartree–Fock-BCS calculations. Fission fragments are studied by dynamical time-dependent Hartree–Fock+BCS calculations. Results show that $^{286}$Cf has an octupole deformation at ground state, which can increase the fission barrier height by 1.1 MeV and enhance significantly the spontaneous fission half-life. To search possible fission channels, dynamical calculations with a broad coverage of initial deformations result in two slightly asymmetric peaks around $A=128$ and 150 for $^{278}$Cf, and $A=133$ and 153 for $^{286}$Cf. Very asymmetric fission channels as given by semi-empirical models are not found in our results.
Received: 10 October 2022      Published: 14 December 2022
PACS:  24.75.+i (General properties of fission)  
  26.30.Hj (r-process)  
  27.90.+b (A ≥ 220)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/01/012401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/012401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiawei Chen
Junchen Pei
Yu Qiang
and Jihuai Chi
[1] Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, and Thielemann F K 2021 Rev. Mod. Phys. 93 015002
[2] Drout M R 2017 Science 358 1570
[3] Lemaitre J F, Goriely S, Bauswein A, and Janka H T 2021 Phys. Rev. C 103 025806
[4] Giuliani S A, Martinez-Pinedo G, and Robledo L M 2018 Phys. Rev. C 97 034323
[5] Eichler M, Arcones A, Kelic A, Korobkin O, Langanke K, Marketin T, Martinez-Pinedo G, Panov I, Rauscher T, Rosswog S, Winteler C, Zinner N T, and Thielemann F K 2015 Astrophys. J. 808 30
[6] Goriely S, Sida J L, Lemaître J F, Panebianco S, Dubray N, Hilaire S, Bauswein A, and Janka H T 2013 Phys. Rev. Lett. 111 242502
[7] Zhu Y L, Lund K A, Barnes J, Sprouse T M, Vassh N, McLaughlin G C, Mumpower M R, and Surman R 2021 Astrophys. J. 906 94
[8] Chai Q Z, Qiang Y, and Pei J C 2022 Phys. Rev. C 105 034315
[9] Schmidt K H, Jurado B, Amouroux C, and Schmitt C 2016 Nucl. Data Sheets 131 107
[10] Regnier D, Dubray N, Schunck N, and Verriere M 2016 Phys. Rev. C 93 054611
[11] Zhao J, Nikšić T, Vretenar D, and Zhou S G 2019 Phys. Rev. C 99 014618
[12] Liu L L, Wu X Z, Chen Y J, Shen C W, Li Z X, and Ge Z G 2019 Phys. Rev. C 99 044614
[13] Mumpower M R, Jaffk P, Verriere M, and Randrup J 2020 Phys. Rev. C 101 054607
[14] Bulgac A, Jin S, Roche K J, Schunck N, and Stetcu I 2019 Phys. Rev. C 100 034615
[15] Scamps G, Simenel C, and Lacroix D 2015 Phys. Rev. C 92 011602(R)
[16]Qiang Y, Pei J C, and Stevenson P D 2021 Phys. Rev. C 103 L031304
[17] Qiang Y and Pei J C 2021 Phys. Rev. C 104 054604
[18]Ring P and Schuck P 2004 The Nuclear Many-Body Problem (Berlin: Springer)
[19] Bartel J, Quentin P, Brack M, Guet C, and Håkansson H B 1982 Nucl. Phys. A 386 79
[20] Dobaczewski J, Nazarewicz W, and Stoitsov M V 2002 Eur. Phys. J. A 15 21
[21] Reinhard P G, Schuetrumpf B, and Maruhn J A 2021 Comput. Phys. Commun. 258 107603
[22] Zhu Y and Pei J C 2016 Phys. Rev. C 94 024329
[23] Ebata S, Nakatsukasa T, Inakura T, Yoshida K, Hashimoto Y, and Yabana K 2010 Phys. Rev. C 82 034306
[24] Maruhn J A, Reinhard P G, Stevenson P D, and Umar A S 2014 Comp. Phys. Comm. 185 2195
[25] Lu B N, Zhao E G, and Zhou S G 2012 Phys. Rev. C 85 011301(R)
[26] Lu B N, Zhao J, Zhao E G, and Zhou S G 2014 Phys. Rev. C 89 014323
[27] Meng X, Lu B N, and Zhou S G 2020 Sci. Chin. Phys. Mech. Astron. 63 212011
[28] Goddard P, Stevenson P, and Rios A 2015 Phys. Rev. C 92 054610
[29] Zhao J, Lu B N, Vretenar D, Zhao E G, and Zhou S G 2015 Phys. Rev. C 91 014321
[30] Cyburt R H, Amthor A M, Ferguson R, Meisel Z, Smith K, Warren S, Heger A, Hoffman R D, Rauscher T, Sakharuk A, Schatz H, Thielemann F K, and Wiescher M 2010 Astrophys. J. Suppl. Ser. 189 240
Related articles from Frontiers Journals
[1] S. Soheyli. Energy and Mass Distributions of Induced-Fission of 197Au Nucleus by 29MeV Protons[J]. Chin. Phys. Lett., 2007, 24(6): 012401
[2] Lü Hong-Feng, GENG Li-Sheng, MENG Jie. Fission Barrier for 240Pu in the Quadrupole Constrained Relativistic Mean Field Approach[J]. Chin. Phys. Lett., 2006, 23(11): 012401
[3] BAO Jing-Dong, Lü Kun, LIU Ling, JIA Ying. Oscillation of Hot Fissioning Nuclei around a Saddle Point[J]. Chin. Phys. Lett., 2005, 22(8): 012401
[4] WANG Kun, MA Yu-Gang, WEI Yi-Bin, CAI Xiang-Zhou, CHEN Jin-Gen, FANG De-Qing, GUO Wei, MA Guo-Liang, SHEN Wen-Qing, TIAN Wen-Dong, ZHONG Chen, ZHOU Xing-Fei. Isoscaling of the Fission Fragments with Langevin Equation[J]. Chin. Phys. Lett., 2005, 22(1): 012401
Viewed
Full text


Abstract