FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm |
Yu Ma1,2, Wei-Jiang Li1,2 Yun-Fei, Xu1,2, Jun-Qi Liu1,2*, Ning Zhuo1,2*, Ke Yang1,2, Jin-Chuan Zhang1,2, Shen-Qiang Zhai1,2, Shu-Man Liu1,2, Li-Jun Wang1,2, and Feng-Qi Liu1,2 |
1Key Laboratory of Semiconductor Materials Science, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Yu Ma, Wei-Jiang Li Yun-Fei, Xu et al 2023 Chin. Phys. Lett. 40 014201 |
|
|
Abstract We present optical frequency combs with a spectral emission of 48 cm$^{-1}$ and an output power of 420 mW based on a single-core quantum cascade laser at $\lambda \sim 8.7$ µm. A flat top spectrum sustains up to 130 comb modes delivering $\sim$ 3.2 mW of optical power per mode, making it a valuable tool for dual comb spectroscopy. The homogeneous gain medium, relying on a slightly diagonal bound-to-continuum structure, promises to provide a broad and stable gain for comb operating. Remarkably, the dispersion of this device is measured within 300 fs$^{2}$/mm to ensure stable comb operation over 90% of the total current range. The comb is observed with a narrow beatnote linewidth around 2 kHz and has weak dependence on the applied current for stable comb operation.
|
|
Received: 12 October 2022
Published: 26 December 2022
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
73.63.Hs
|
(Quantum wells)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
|
|
|
[1] | Hugi A, Villares G, Blaser S, Liu H C, and Faist J 2012 Nature 492 229 |
[2] | Soibel A, Capasso F, Gmachl C, Peabody M L, Sergent A M, Paiella R, Hwang H Y, Sivco D L, Cho A Y, Liu H C, Jirauschek C, and Kartner F X 2004 IEEE J. Quantum Electron. 40 844 |
[3] | Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, and Beck M 2016 Nanophotonics 5 272 |
[4] | Villares G, Hugi A, Blaser S, and Faist J 2014 Nat. Commun. 5 5192 |
[5] | Hillbrand J, Andrews A M, Detz H, Strasser G, and Schwarz B 2019 Nat. Photon. 13 101 |
[6] | Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, and Wang Z G 2010 Chin. Phys. Lett. 27 104205 |
[7] | Wang T, Liu J Q, Chen J Y, Liu Y H, Liu F Q, Wang L J, and Wang Z G 2013 Chin. Phys. Lett. 30 064201 |
[8] | Fei T, Zhai S, Zhang J, Zhuo N, Liu J, Wang L, Liu S, Jia Z, Li K, Sun Y, Guo K, Liu F, and Wang Z 2021 J. Semicond. 42 112301 |
[9] | Beiser M, Opačak N, Hillbrand J, Strasser G, and Schwarz B 2021 Opt. Lett. 46 3416 |
[10] | Lu Q Y, Razeghi M, Slivken S, Bandyopadhyay N, Bai Y, Zhou W J, Chen M, Heydari D, Haddadi A, McClintock R, Amanti M, and Sirtori C 2015 Appl. Phys. Lett. 106 051105 |
[11] | Chang L, Liu S, and Bowers J E 2022 Nat. Photon. 16 95 |
[12] | Consolino L, Nafa M, De Regis M, Cappelli F, Garrasi K, Mezzapesa F P, Li L, Davies A G, Linfield E H, Vitiello M S, Bartalini S, and De Natale P 2020 Commun. Phys. 3 69 |
[13] | Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, and Zeng H 2020 ACS Photon. 7 49 |
[14] | Jerez B, Martín-Mateos P, Prior E, de Dios C, and Acedo P 2016 Opt. Express 24 14986 |
[15] | Garrasi K, Mezzapesa F P, Salemi L, Li L, Consolino L, Bartalini S, De Natale P, Davies A G, Linfield E H, and Vitiello M S 2019 ACS Photon. 6 73 |
[16] | Razeghi M, Lu Q, Wu D, and Slivken S 2018 Proc. SPIE 10756 107560I |
[17] | Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, and Faist J 2016 Optica 3 252 |
[18] | Li L H, Garrasi K, Kundu I, Han Y J, Salih M, Vitiello M S, Davies A G, and Linfield E H 2018 Electron. Lett. 54 1229 |
[19] | Jouy P, Wolf J M, Bidaux Y, Allmendinger P, Mangold M, Beck M, and Faist J 2017 Appl. Phys. Lett. 111 141102 |
[20] | Wang R J, Täschler P, Kapsalidis F, Shahmohammadi M, Beck M, and Faist J 2020 Opt. Lett. 45 6462 |
[21] | Bidaux Y, Kapsalidis F, Jouy P, Beck M, and Faist J 2018 Laser Photon. Rev. 12 1700323 |
[22] | Corrias N, Gabbrielli T, De Natale P, Consolino L, and Cappelli F 2022 Opt. Express 30 10217 |
[23] | Hofstetter D and Faist J 1999 IEEE Photon. Technol. Lett. 11 1372 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|